Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Cell Dev Biol ; 11: 1258993, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928905

RESUMEN

We have previously shown that human and murine breast extracellular matrix (ECM) can significantly impact cellular behavior, including stem cell fate determination. It has been established that tissue-specific extracellular matrix from the central nervous system has the capacity to support neuronal survival. However, the characterization of its influence on stem cell differentiation and its adaptation to robust 3D culture models is underdeveloped. To address these issues, we combined our 3D bioprinter with hydrogels containing porcine brain extracellular matrix (BMX) to test the influence of the extracellular matrix on stem cell differentiation. Our 3D bioprinting system generated reproducible 3D neural structures derived from mouse embryonic stem cells (mESCs). We demonstrate that the addition of BMX preferentially influences 3D bioprinted mESCs towards neural lineages compared to standard basement membrane (Geltrex/Matrigel) hydrogels alone. Furthermore, we demonstrate that we can transplant these 3D bioprinted neural cellular structures into a mouse's cleared mammary fat pad, where they continue to grow into larger neural outgrowths. Finally, we demonstrate that direct injection of human induced pluripotent stem cells (hiPSCS) and neural stem cells (NSCs) suspended in pure BMX formed neural structures in vivo. Combined, these findings describe a unique system for studying brain ECM/stem cell interactions and demonstrate that BMX can direct pluripotent stem cells to differentiate down a neural cellular lineage without any additional specific differentiation stimuli.

2.
3.
Mech Dev ; 159: 103565, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31336167

RESUMEN

Long-label retention has been used by many to prove Cairns' immortal strand hypothesis and to identify potential stem cells. Here, we describe two strategies using 5-ethynl-2'-deoxyuridine (EdU) to identify and understand the distribution of long-label-retaining mammary epithelial cells during formation of the mouse mammary ductal system. First, EdU was given upon two consecutive days per week during weeks 4 through 10 and analyzed for label retention at 13 weeks of age. Alternatively, EdU was given for 14 consecutive days beginning at 28 days of age and ending at 42 days of age. Analyses were conducted at >91 days of age (13 weeks). Many more LREC were detected following the second labeling method and their distribution among the subsequently developed ducts. This finding indicated that the early-labeled cells that retained their label were distributed into portions of the gland that developed after the ending of EdU treatment (i.e. 42->91 days). These observations may have important meaning with respect to the previously demonstrated retention of regenerative capacity throughout the mouse mammary gland despite age or reproductive history. These results suggest LREC may represent long-lived progenitor cells that are responsible for mammary gland homeostasis. Additionally, these cells may act as multipotent stem cells capable of mammary gland regeneration upon random fragment transplantation into epithelium-denuded mammary fat pads.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Organogénesis , Animales , Femenino , Fase G2 , Ratones Endogámicos BALB C , Ratones Desnudos , Coloración y Etiquetado
4.
Acta Biomater ; 95: 201-213, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31233891

RESUMEN

The extracellular matrix (ECM) of tissues is an important mediator of cell function. Moreover, understanding cellular dynamics within their specific tissue context is also important for developmental biology, cancer research, and regenerative medicine. However, robust in vitro models that incorporate tissue-specific microenvironments are lacking. Here we describe a novel mammary-specific culture protocol that combines a self-gelling hydrogel comprised solely of ECM from decellularized rat or human breast tissue with the use of our previously described 3D bioprinting platform. We initially demonstrate that undigested and decellularized mammary tissue can support mammary epithelial and tumor cell growth. We then describe a methodology for generating mammary ECM extracts that can spontaneously gel to form hydrogels. These ECM hydrogels retain unique structural and signaling profiles that elicit differential responses when normal mammary and breast cancer cells are cultured within them. Using our bioprinter, we establish that we can generate large organoids/tumoroids in the all mammary-derived hydrogel. These findings demonstrate that our system allows for growth of organoids/tumoroids in a tissue-specific matrix with unique properties, thus providing a suitable platform for ECM and epithelial/cancer cell studies. STATEMENT OF SIGNIFICANCE: Factors within extracellular matrices (ECMs) are specific to their tissue of origin. It has been shown that tissue specific factors within the mammary gland's ECM have pronounced effects on cellular differentiation and cancer behavior. Understanding the role of the ECM in controlling cell fate has major implications for developmental biology, tissue engineering, and cancer therapy. However, in vitro models to study cellular interactions with tissue specific ECM are lacking. Here we describe the generation of 3D hydrogels consisting solely of human or mouse mammary ECM. We demonstrate that these novel 3D culture substrates can sustain large 3D bioprinted organoid and tumoroid formation. This is the first demonstration of an all mammary ECM culture system capable of sustaining large structural growths.


Asunto(s)
Bioimpresión , Neoplasias de la Mama/patología , Matriz Extracelular/química , Hidrogeles/farmacología , Glándulas Mamarias Humanas/patología , Organoides/metabolismo , Impresión Tridimensional , Animales , Línea Celular Tumoral , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Queratina-5/metabolismo , Antígeno Ki-67/metabolismo , Ratas , Transducción de Señal
5.
Sci Rep ; 9(1): 7466, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097753

RESUMEN

The normal mammary microenvironment can suppress tumorigenesis and redirect cancer cells to adopt a normal mammary epithelial cell fate in vivo. Understanding of this phenomenon offers great promise for novel treatment and detection strategies in cancer, but current model systems make mechanistic insights into the process difficult. We have recently described a low-cost bioprinting platform designed to be accessible for basic cell biology laboratories. Here we report the use of this system for the study of tumorigenesis and microenvironmental redirection of breast cancer cells. We show our bioprinter significantly increases tumoroid formation in 3D collagen gels and allows for precise generation of tumoroid arrays. We also demonstrate that we can mimic published in vivo findings by co-printing cancer cells along with normal mammary epithelial cells to generate chimeric organoids. These chimeric organoids contain cancer cells that take part in normal luminal formation. Furthermore, we show for the first time that cancer cells within chimeric structures have a significant increase in 5-hydroxymethylcytosine levels as compared to bioprinted tumoroids. These results demonstrate the capacity of our 3D bioprinting platform to study tumorigenesis and microenvironmental control of breast cancer and highlight a novel mechanistic insight into the process of microenvironmental control of cancer.


Asunto(s)
Neoplasias de la Mama/patología , Organoides/patología , Impresión Tridimensional , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Biotecnología/métodos , Carcinogénesis/patología , Línea Celular , Células Cultivadas , Femenino , Humanos , Células MCF-7 , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/patología , Organoides/metabolismo , Microambiente Tumoral
6.
Breast Cancer Res ; 20(1): 136, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30454070

RESUMEN

Following publication of the original article [1], the authors reported a typesetting error in the spelling of the second author's name.

7.
Breast Cancer Res ; 20(1): 122, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305139

RESUMEN

BACKGROUND: Standard three-dimensional (3D) in vitro culture techniques, such as those used for mammary epithelial cells, rely on random distribution of cells within hydrogels. Although these systems offer advantages over traditional 2D models, limitations persist owing to the lack of control over cellular placement within the hydrogel. This results in experimental inconsistencies and random organoid morphology. Robust, high-throughput experimentation requires greater standardization of 3D epithelial culture techniques. METHODS: Here, we detail the use of a 3D bioprinting platform as an investigative tool to control the 3D formation of organoids through the "self-assembly" of human mammary epithelial cells. Experimental bioprinting procedures were optimized to enable the formation of controlled arrays of individual mammary organoids. We define the distance and cell number parameters necessary to print individual organoids that do not interact between print locations as well as those required to generate large contiguous organoids connected through multiple print locations. RESULTS: We demonstrate that as few as 10 cells can be used to form 3D mammary structures in a single print and that prints up to 500 µm apart can fuse to form single large structures. Using these fusion parameters, we demonstrate that both linear and non-linear (contiguous circles) can be generated with sizes of 3 mm in length/diameter. We confirm that cells from individual prints interact to form structures with a contiguous lumen. Finally, we demonstrate that organoids can be printed into human collagen hydrogels, allowing for all-human 3D culture systems. CONCLUSIONS: Our platform is adaptable to different culturing protocols and is superior to traditional random 3D culture techniques in efficiency, reproducibility, and scalability. Importantly, owing to the low-cost accessibility and computer numerical control-driven platform of our 3D bioprinter, we have the ability to disseminate our experiments with absolute precision to interested laboratories.


Asunto(s)
Bioimpresión/métodos , Técnicas de Cultivo de Célula/métodos , Células Epiteliales/citología , Glándulas Mamarias Humanas/citología , Línea Celular , Femenino , Humanos , Hidrogeles , Organoides/citología , Organoides/crecimiento & desarrollo , Reproducibilidad de los Resultados
8.
Pathology ; 50(5): 524-529, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29891189

RESUMEN

Interest into the cellular biology of human tonsillar crypts has grown in recent years because it is now known to be the site of origin of most human papilloma virus (HPV) induced oropharyngeal squamous cell carcinomas (OPSCC). Despite the interest, still relatively little is known regarding the cellular hierarchy and dynamics of this anatomical subsite. Here we evaluate normal tonsillar crypts for expression of putative stem cell markers. We found that ALDH1A1 was uniquely expressed in a subset of suprabasal tonsillar crypt epithelium. This cell population was unique from NGFR expressing cells, which were previously identified to have stem/progenitor activity in vitro. In vivo mitochondrial lineage tracing was consistent with a basal to luminal progression of cellular development. This provides support for NGFR cells as the resident stem/progenitor cells in tonsillar crypts, and suggests that the ALDH1A1 cells are not stem/progenitor cells, but merely a unique component of the crypt cellular microenvironment. Analysis of tumours found that both NGFR and ALDH1A1 are lost in HPV+ and HPV- tumours, while LGR5 expression is induced in the same tumours. These results identify a unique component of the tonsillar crypt epithelium-ALDH1A1 cells-and support a cellular model where NGFR+ cells are the long-lived progenitor cells within tonsillar crypts. They also provide evidence that NGFR and ALDH1A1+ cells are lost during tumourigenesis.


Asunto(s)
Aldehído Deshidrogenasa/genética , Carcinoma de Células Escamosas/genética , Transformación Celular Neoplásica/genética , Neoplasias de Cabeza y Cuello/genética , Tonsila Palatina/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Carcinoma de Células Escamosas/patología , Diferenciación Celular/fisiología , Transformación Celular Neoplásica/patología , Neoplasias de Cabeza y Cuello/patología , Humanos , Proteínas del Tejido Nervioso/genética , Infecciones por Papillomavirus/patología , Receptores de Factor de Crecimiento Nervioso/genética , Retinal-Deshidrogenasa , Carcinoma de Células Escamosas de Cabeza y Cuello
9.
J Neural Eng ; 15(5): 056021, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29848804

RESUMEN

OBJECTIVE: Picosecond pulse electric fields (psPEF) have the potential to elicit functional changes in mammalian cells in a non-contact manner. Such electro-manipulation of pluripotent and multipotent cells could be a tool in both neural interface and tissue engineering. Here, we describe the potential of psPEF in directing neural stem cells (NSCs) gene expression, metabolism, and proliferation. As a comparison mesenchymal stem cells (MSCs) were also tested. APPROACH: A psPEF electrode was anchored on a customized commercially available 3D printer, which allowed us to deliver pulses with high spatial precision and systematically control the electrode position in three-axes. When the electrodes are continuously energized and their position is shifted by the 3D printer, large numbers of cells on a surface can be exposed to a uniform psPEF. With two electric field strengths (20 and 40 kV cm-1), cell responses, including cell viability, proliferation, and gene expression assays, were quantified and analyzed. MAIN RESULTS: Analysis revealed both NSCs and MSCs showed no significant cell death after treatments. Both cell types exhibited an increased metabolic reduction; however, the response rate for MSCs was sensitive to the change of electric field strength, but for NSCs, it appeared independent of electric field strength. The change in proliferation rate was cell-type specific. MSCs underwent no significant change in proliferation whereas NSCs exhibited an electric field dependent response with the higher electric field producing less proliferation. Further, NSCs showed an upregulation of glial fibrillary acidic protein (GFAP) after 24 h to 40 kV cm-1, which is characteristic of astrocyte specific differentiation. SIGNIFICANCE: Changes in cell metabolism, proliferation, and gene expression after picosecond pulsed electric field exposure are cell type specific.


Asunto(s)
Linaje de la Célula/genética , Proliferación Celular , Campos Electromagnéticos , Expresión Génica/genética , Células-Madre Neurales/fisiología , Impresión Tridimensional , Astrocitos/metabolismo , Muerte Celular , Electrodos , Proteína Ácida Fibrilar de la Glía/biosíntesis , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Neurogénesis
10.
J Cell Sci ; 131(13)2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29898922

RESUMEN

Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat (TNR) expansion within the HTT gene. The mechanisms underlying HD-associated cellular dysfunction in pluripotency and neurodevelopment are poorly understood. We had previously identified downregulation of selected DNA repair genes in HD fibroblasts relative to wild-type fibroblasts, as a result of promoter hypermethylation. Here, we tested the hypothesis that hypomethylation during cellular reprogramming to the induced pluripotent stem cell (iPSC) state leads to upregulation of DNA repair genes and stabilization of TNRs in HD cells. We sought to determine how the HD TNR region is affected by global epigenetic changes through cellular reprogramming and early neurodifferentiation. We find that early stage HD-affected neural stem cells (HD-NSCs) contain increased levels of global 5-hydroxymethylation (5-hmC) and normalized DNA repair gene expression. We confirm TNR stability is induced in iPSCs, and maintained in HD-NSCs. We also identify that upregulation of 5-hmC increases ten-eleven translocation 1 and 2 (TET1/2) protein levels, and show their knockdown leads to a corresponding decrease in the expression of select DNA repair genes. We further confirm decreased expression of TET1/2-regulating miR-29 family members in HD-NSCs. Our findings demonstrate that mechanisms associated with pluripotency induction lead to a recovery in the expression of select DNA repair gene and stabilize pathogenic TNRs in HD.


Asunto(s)
Reparación del ADN , Epigénesis Genética , Enfermedad de Huntington/genética , Células Madre Pluripotentes Inducidas/metabolismo , Expansión de Repetición de Trinucleótido , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
11.
J Biol Eng ; 11: 34, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29177006

RESUMEN

The accumulated evidence points to the microenvironment as the primary mediator of cellular fate determination. Comprised of parenchymal cells, stromal cells, structural extracellular matrix proteins, and signaling molecules, the microenvironment is a complex and synergistic edifice that varies tissue to tissue. Furthermore, it has become increasingly clear that the microenvironment plays crucial roles in the establishment and progression of diseases such as cardiovascular disease, neurodegeneration, cancer, and ageing. Here we review the historical perspectives on the microenvironment, and how it has directed current explorations in tissue engineering. By thoroughly understanding the role of the microenvironment, we can begin to correctly manipulate it to prevent and cure diseases through regenerative medicine techniques.

12.
Sci Rep ; 7: 40196, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28071703

RESUMEN

Previously, we demonstrated the ability of the normal mammary microenvironment (niche) to direct non-mammary cells including testicular and embryonic stem cells (ESCs) to adopt a mammary epithelial cell (MEC) fate. These studies relied upon the interaction of transplanted normal MECs with non-mammary cells within the mammary fat-pads of recipient mice that had their endogenous epithelium removed. Here, we tested whether acellular mammary extracellular matrix (mECM) preparations are sufficient to direct differentiation of testicular-derived cells and ESCs to form functional mammary epithelial trees in vivo. We found that mECMs isolated from adult mice and rats were sufficient to redirect testicular derived cells to produce normal mammary epithelial trees within epithelial divested mouse mammary fat-pads. Conversely, ECMs isolated from omental fat and lung did not redirect testicular cells to a MEC fate, indicating the necessity of tissue specific components of the mECM. mECM preparations also completely inhibited teratoma formation from ESC inoculations. Further, a phenotypically normal ductal outgrowth resulted from a single inoculation of ESCs and mECM. To the best of our knowledge, this is the first demonstration of a tissue specific ECM driving differentiation of cells to form a functional tissue in vivo.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/fisiología , Matriz Extracelular/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Animales , Ratones , Ratas
13.
FEBS J ; 283(21): 3898-3918, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27618366

RESUMEN

Metastatic castration-resistant prostate cancer (mCRPC) accounts for a high percentage of prostate cancer mortality. The proprietary compound galeterone (gal) was designed to inhibit proliferation of androgen/androgen receptor (AR)-dependent prostate cancer cell in vitro and in vivo and is currently in phase III clinical development. Additionally, clinical studies with gal revealed its superb efficacy in four different cohorts of patients with mCRPC, including those expressing splice variant AR-V7. Preclinical studies with gal show that it also exhibits strong antiproliferative activities against AR-negative prostate cancer cells and tumors through a mechanism involving phosphorylation of eIF2α, which forms an integral component of the eukaryotic mRNA translation complex. Thus, we hypothesized that gal and its new analog, VNPT55, could modulate oncogenic mRNA translation and prostate cancer cell migration and invasion. We report that gal and VNPT55 profoundly inhibit migration and invasion of prostate cancer cells, possibly by down-regulating protein expression of several EMT markers (Snail, Slug, N-cadherin, vimentin, and MMP-2/-9) via antagonizing the Mnk-eIF4E axis. In addition, gal/VNPT55 inhibited both NF-κB and Twist1 transcriptional activities, down-regulating Snail and BMI-1 mRNA expression, respectively. Furthermore, profound up-regulation of E-cadherin mRNA and protein expression may explain the observed significant inhibition of prostate cancer cell migration and invasion. Moreover, expression of self-renewal proteins, ß-catenin, CD44, and Nanog, was markedly depleted. Analysis of gal/VNPT55-treated CWR22Rv1 xenograft tissue sections also revealed that observations in vitro were recapitulated in vivo. Our results suggest that gal/VNPT55 could become promising agents for the prevention and/or treatment of all stages of prostate cancer.


Asunto(s)
Androstadienos/farmacología , Bencimidazoles/farmacología , Movimiento Celular/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Movimiento Celular/genética , Factor 4E Eucariótico de Iniciación/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones SCID , FN-kappa B/metabolismo , Invasividad Neoplásica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Biofabrication ; 8(2): 025017, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27271208

RESUMEN

The precision and repeatability offered by computer-aided design and computer-numerically controlled techniques in biofabrication processes is quickly becoming an industry standard. However, many hurdles still exist before these techniques can be used in research laboratories for cellular and molecular biology applications. Extrusion-based bioprinting systems have been characterized by high development costs, injector clogging, difficulty achieving small cell number deposits, decreased cell viability, and altered cell function post-printing. To circumvent the high-price barrier to entry of conventional bioprinters, we designed and 3D printed components for the adaptation of an inexpensive 'off-the-shelf' commercially available 3D printer. We also demonstrate via goal based computer simulations that the needle geometries of conventional commercially standardized, 'luer-lock' syringe-needle systems cause many of the issues plaguing conventional bioprinters. To address these performance limitations we optimized flow within several microneedle geometries, which revealed a short tapered injector design with minimal cylindrical needle length was ideal to minimize cell strain and accretion. We then experimentally quantified these geometries using pulled glass microcapillary pipettes and our modified, low-cost 3D printer. This systems performance validated our models exhibiting: reduced clogging, single cell print resolution, and maintenance of cell viability without the use of a sacrificial vehicle. Using this system we show the successful printing of human induced pluripotent stem cells (hiPSCs) into Geltrex and note their retention of a pluripotent state 7 d post printing. We also show embryoid body differentiation of hiPSC by injection into differentiation conducive environments, wherein we observed continuous growth, emergence of various evaginations, and post-printing gene expression indicative of the presence of all three germ layers. These data demonstrate an accessible open-source 3D bioprinter capable of serving the needs of any laboratory interested in 3D cellular interactions and tissue engineering.


Asunto(s)
Bioimpresión/métodos , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Impresión Tridimensional/instrumentación , Animales , Bioimpresión/economía , Bioimpresión/instrumentación , Supervivencia Celular , Humanos , Impresión Tridimensional/economía , Ratas , Ingeniería de Tejidos/economía , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química
15.
Am J Pathol ; 186(7): 1967-1976, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27182645

RESUMEN

Huntington disease (HD) is an autosomal dominantly inherited disease that exhibits genetic anticipation of affected progeny due to expansions of a trinucleotide repeat (TNR) region within the HTT gene. DNA repair machinery is a known effector of TNR instability; however, the specific defects in HD cells that lead to TNR expansion are unknown. We hypothesized that HD cells would be deficient in DNA repair gene expression. To test this hypothesis, we analyzed expression of select DNA repair genes involved in mismatch/loop-out repair (APEX1, BRCA1, RPA1, and RPA3) in patient-derived HD cells and found each was consistently down-regulated relative to wild-type samples taken from unaffected individuals in the same family. Rescue of DNA repair gene expression by 5-azacytidine treatment identified DNA methylation as a mediator of DNA repair gene expression deficiency. Bisulfite sequencing confirmed hypermethylation of the APEX1 promoter region in HD cells relative to control, as well as 5-azacytidine-induced hypomethylation. 5-Azacytidine treatments also resulted in stabilization of TNR expansion within the mutant HTT allele during long-term culture of HD cells. Our findings indicate that DNA methylation leads to DNA repair down-regulation and TNR instability in mitotically active HD cells and offer a proof of principle that epigenetic interventions can curb TNR expansions.


Asunto(s)
Metilación de ADN/genética , Reparación del ADN/genética , Enfermedad de Huntington/genética , Expansión de Repetición de Trinucleótido/genética , Células Cultivadas , Regulación hacia Abajo , Técnica del Anticuerpo Fluorescente , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Eur J Pharmacol ; 734: 98-104, 2014 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-24726842

RESUMEN

Resistance to aromatase inhibitors is a major concern in the treatment of breast cancer. Long-term letrozole cultured (LTLC) cells represent a model of resistance to aromatase inhibitors. The LTLC cells were earlier generated by culturing MCF-7Ca, the MCF-7 human breast cancer cell line stably transfected with human placental aromatase gene for a prolonged period in the presence of letrozole. In the present study the effect of RAMBA, VN/14-1 on the sensitivity of LTLC cells upon multiple passaging and the mechanisms of action of VN/14-1 in such high passage LTLC (HP-LTLC) cells was investigated. We report that multiple passaging of LTLC cells (HP-LTLC cell clones) led to profound decrease in their sensitivity to VN/14-1. Additionally, microarray studies and protein analysis revealed that VN/14-1 induced marked endoplasmic reticulum (ER) stress and autophagy in HP-LTLC cells. We further report that VN/14-1 in combination with thapsigargin exhibited synergistic anti-cancer effect in HP-LTLC cells. Preliminary pharmacokinetics in rats revealed that VN/14-1 reached a peak plasma concentration (Cmax) within 0.17h after oral dosing. Its absolute oral bioavailability was >100%. Overall these results indicate potential of VN/14-1 for further clinical development as a potential oral agent for the treatment of breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Autofagia/efectos de los fármacos , Neoplasias de la Mama/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Imidazoles/farmacología , Imidazoles/farmacocinética , Tretinoina/análogos & derivados , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Disponibilidad Biológica , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Imidazoles/administración & dosificación , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Ratas , Ratas Sprague-Dawley , Tapsigargina/farmacología , Tretinoina/administración & dosificación , Tretinoina/farmacocinética , Tretinoina/farmacología , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Cell Sci ; 127(Pt 1): 27-32, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24190884

RESUMEN

We have previously shown that non-mammary and tumorigenic cells can respond to the signals of the mammary niche and alter their cell fate to that of mammary epithelial progenitor cells. Here we tested the hypothesis that paracrine signals from mammary epithelial cells expressing progesterone receptor (PR) are dispensable for redirection of testicular cells, and that re-directed wild-type testicular-derived mammary cells can rescue lobulogenesis of PR-null mammary epithelium by paracrine signaling during pregnancy. We injected PR-null epithelial cells mixed with testicular cells from wild-type adult male mice into cleared fat-pads of recipient mice. The testicular cells were redirected in vivo to mammary epithelial cell fate during regeneration of the mammary epithelium, and persisted in second-generation outgrowths. In the process, the redirected testicular cells rescued the developmentally deficient PR-null cells, signaling them through the paracrine factor RANKL to produce alveolar secretory structures during pregnancy. This is the first demonstration that paracrine signaling required for alveolar development is not required for cellular reprogramming in the mammary gland, and that reprogrammed testicular cells can provide paracrine signals to the surrounding mammary epithelium.


Asunto(s)
Reprogramación Celular/genética , Células Epiteliales/citología , Glándulas Mamarias Animales/citología , Comunicación Paracrina/genética , Receptores de Progesterona/genética , Túbulos Seminíferos/citología , Tejido Adiposo , Animales , Diferenciación Celular , Células Epiteliales/metabolismo , Células Epiteliales/trasplante , Femenino , Expresión Génica , Inyecciones , Masculino , Glándulas Mamarias Animales/metabolismo , Ratones , Embarazo , Progesterona/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo , Receptores de Progesterona/deficiencia , Túbulos Seminíferos/metabolismo , Túbulos Seminíferos/trasplante , Transducción de Señal
18.
Breast Cancer Res ; 16(1): 302, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25927296

RESUMEN

Extracellular matrix proteins from embryonic mesenchyme have a normalizing effect on cancer cells in vitro and slow tumor growth in vivo. This concept is suggestive of a new method for controlling the growth and spread of existing cancer cells in situ and indicates the possibility that extracellular proteins and/or embryonic mesenchymal fibroblasts may represent a fertile subject for study of new anti-cancer treatments.


Asunto(s)
Biglicano/química , Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula , Matriz Extracelular/metabolismo , Glándulas Mamarias Animales/embriología , Mesodermo/patología , Animales , Femenino , Humanos
19.
Mol Cancer ; 12: 79, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23866257

RESUMEN

BACKGROUND: The canonical milk-transmitted mouse mammary tumor virus (MMTV) of C3H mice (C3H-MMTV) rapidly induces tumors in 90% of infected animals by 8 months of age. Pro-viral insertions of C3H-MMTV into genomic DNA results in the overexpression of common core insertion site (CIS) genes, including Wnt1/10b, Rspo2, and Fgf3. Conversely, infection by either the endogenous Mtv-1 virus (in C3Hf) or the exogenous nodule-inducing virus (NIV) (in Balb/c NIV) induces premalignant mammary lesions and tumors with reduced incidence and longer latency than C3H-MMTV. Here, we asked whether Mtv-1/NIV affected the expression of core CIS genes. FINDINGS: We confirmed the presence of active virus in Mtv-1/NIV infected tissues and using quantitative reverse transcription PCR (qRT-PCR) found that Mtv-1/NIV induced neoplasms (tumors and hyperplasia) commonly expressed the core CIS genes Wnt1, Wnt10b, Rspo2, Fgf3. CONCLUSIONS: These results underscore the importance of core CIS gene expression in the early events leading to MMTV-induced mammary tumor initiation regardless of the viral variant.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Virus del Tumor Mamario del Ratón/fisiología , Animales , Femenino , Hiperplasia , Neoplasias Mamarias Experimentales/virología , Ratones , Ratones Endogámicos BALB C
20.
PLoS One ; 8(4): e62019, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637952

RESUMEN

Experiments were conducted to redirect mouse Embryonic Stem (ES) cells from a tumorigenic phenotype to a normal mammary epithelial phenotype in vivo. Mixing LacZ-labeled ES cells with normal mouse mammary epithelial cells at ratios of 1:5 and 1:50 in phosphate buffered saline and immediately inoculating them into epithelium-divested mammary fat pads of immune-compromised mice accomplished this. Our results indicate that tumorigenesis occurs only when normal mammary ductal growth is not achieved in the inoculated fat pads. When normal mammary gland growth occurs, we find ES cells (LacZ+) progeny interspersed with normal mammary cell progeny in the mammary epithelial structures. We demonstrate that these progeny, marked by LacZ expression, differentiate into multiple epithelial subtypes including steroid receptor positive luminal cells and myoepithelial cells indicating that the ES cells are capable of epithelial multipotency in this context but do not form teratomas. In addition, in secondary transplants, ES cell progeny proliferate, contribute apparently normal mammary progeny, maintain their multipotency and do not produce teratomas.


Asunto(s)
Comunicación Celular , Linaje de la Célula , Transformación Celular Neoplásica/patología , Microambiente Celular , Células Madre Embrionarias/patología , Células Epiteliales/patología , Glándulas Mamarias Animales/patología , Actinas/metabolismo , Animales , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Microambiente Celular/efectos de los fármacos , Microambiente Celular/genética , Quimera , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Factor Inhibidor de Leucemia/farmacología , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Receptores de Progesterona/metabolismo , Teratoma/enzimología , Teratoma/patología , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...