Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Front Endocrinol (Lausanne) ; 12: 696977, 2021.
Article En | MEDLINE | ID: mdl-34220720

Purpose: Elevated postprandial glycaemia [PPG] increases the risk of cardiometabolic complications in insulin-resistant, centrally obese individuals. Therefore, strategies that improve PPG are of importance for this population. Consuming large doses of whey protein [WP] before meals reduces PPG by delaying gastric emptying and stimulating the secretion of the incretin peptides, glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide 1 [GLP-1]. It is unclear if these effects are observed after smaller amounts of WP and what impact central adiposity has on these gastrointestinal processes. Methods: In a randomised-crossover design, 12 lean and 12 centrally obese adult males performed two 240 min mixed-meal tests, ~5-10 d apart. After an overnight fast, participants consumed a novel, ready-to-drink WP shot (15 g) or volume-matched water (100 ml; PLA) 10 min before a mixed-nutrient meal. Gastric emptying was estimated by oral acetaminophen absorbance. Interval blood samples were collected to measure glucose, insulin, GIP, GLP-1, and acetaminophen. Results: WP reduced PPG area under the curve [AUC0-60] by 13 and 18.2% in the centrally obese and lean cohorts, respectively (both p <0.001). In both groups, the reduction in PPG was accompanied by a two-three-fold increase in GLP-1 and delayed gastric emptying. Despite similar GLP-1 responses during PLA, GLP-1 secretion during the WP trial was ~27% lower in centrally obese individuals compared to lean (p = 0.001). In lean participants, WP increased the GLP-1ACTIVE/TOTAL ratio comparative to PLA (p = 0.004), indicative of reduced GLP-1 degradation. Conversely, no treatment effects for GLP-1ACTIVE/TOTAL were seen in obese subjects. Conclusion: Pre-meal ingestion of a novel, ready-to-drink WP shot containing just 15 g of dietary protein reduced PPG in lean and centrally obese males. However, an attenuated GLP-1 response to mealtime WP and increased incretin degradation might impact the efficacy of nutritional strategies utilising the actions of GLP-1 to regulate PPG in centrally obese populations. Whether these defects are caused by an individual's insulin resistance, their obese state, or other obesity-related ailments needs further investigation. Clinical Trial Registration: ISRCTN.com, identifier [ISRCTN95281775]. https://www.isrctn.com/.


Blood Glucose/metabolism , Gastrointestinal Hormones/metabolism , Obesity, Abdominal/diet therapy , Whey Proteins/pharmacology , Adult , Blood Glucose/drug effects , C-Peptide/blood , Cross-Over Studies , Eating , England , Food, Formulated , Gastric Emptying/physiology , Gastric Inhibitory Polypeptide/blood , Gastric Inhibitory Polypeptide/drug effects , Glucagon/blood , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/drug effects , Humans , Insulin/blood , Male , Middle Aged , Obesity, Abdominal/blood , Obesity, Abdominal/metabolism , Postprandial Period/drug effects , Thinness/blood , Thinness/metabolism , Whey Proteins/administration & dosage , Young Adult
...