Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evolution ; 78(5): 1022-1023, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437634

RESUMEN

Transposable elements can exhibit a predilection for specific insertion regions. In a recent study, Munasinghe et al. (2023) consider how variation in where TE families prefer to insert within the genome influences their copy number evolution. The study emphasizes how a preference for neutral insertion sites is only advantageous in conjunction with host restriction mechanisms, which suggests that insertion preference may be a strategy to mitigate genetic conflicts with the host.


Asunto(s)
Elementos Transponibles de ADN , Animales , Evolución Molecular , Mutagénesis Insercional
2.
J Mol Evol ; 91(6): 793-805, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37906255

RESUMEN

Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.


Asunto(s)
Receptores Odorantes , Animales , Filogenia , Receptores Odorantes/genética , Seudogenes/genética , Anuros/genética , Olfato/genética
3.
Genet Mol Biol ; 45(3 Suppl 1): e20220071, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36394537

RESUMEN

Telomere has a central role in chromosomal stability events. Chromosome ends organized in telomere-loop prevent activation of DNA damage response (DDR) mechanisms, thus keeping the chromosome structure organized. On the other hand, free chromosome ends, dysfunctional telomeres, and interstitial telomeric sequences (ITS) can trigger chromosome rearrangements. Here, the telomere organization, function, and maintenance mechanisms, in addition to ITS types and their involvement in chromosome changes, were revisited. Despite a general (TTAGGG)n sequence being present in vertebrate telomeres, insects show more diversification of their telomere motif. The relation between ITS and chromosome rearrangements was observed in insects and vertebrates, demonstrating different types of genome organization and distribution. Some ITS cannot be considered relicts of chromosome rearrangements because probable they were inserted during a double-strand break repair mechanism. On the other hand, the involvement of telomere sequences participating or triggering chromosome rearrangements or organizing satellite DNA components in several species groups is evident. The genomic assembling advances and applying other methodologies over ITS, and their flanking regions, can help to understand the telomere participation in the chromosomal evolution in species groups with highly diversified karyotypes.

4.
Cells ; 11(21)2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36359770

RESUMEN

The impact of transposable elements (TEs) on the evolution of the eukaryote genome has been observed in a number of biological processes, such as the recruitment of the host's gene expression network or the rearrangement of genome structure. However, TEs may also provide a substrate for the emergence of novel repetitive elements, which contribute to the generation of new genomic components during the course of the evolutionary process. In this review, we examine published descriptions of TEs that give rise to tandem sequences in an attempt to comprehend the relationship between TEs and the emergence of de novo satellite DNA families in eukaryotic organisms. We evaluated the intragenomic behavior of the TEs, the role of their molecular structure, and the chromosomal distribution of the paralogous copies that generate arrays of repeats as a substrate for the emergence of new repetitive elements in the genome. We highlight the involvement and importance of TEs in the eukaryote genome and its remodeling processes.


Asunto(s)
Elementos Transponibles de ADN , Eucariontes , Elementos Transponibles de ADN/genética , Eucariontes/genética , ADN Satélite
5.
Mol Phylogenet Evol ; 168: 107393, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051593

RESUMEN

The transposable elements (TE) represent a large portion of anuran genomes that act as components of genetic diversification. The LINE order of retrotransposons is among the most representative and diverse TEs and is poorly investigated in anurans. Here we explored the LINE diversity with an emphasis on the elements generically called Rex in Pipidae species, more specifically, in the genomes ofXenopus tropicalis, used as a model genome in the study of anurans,the allotetraploid sister species Xenopus laevis and theAmerican species Pipa carvalhoi. We were able to identify a great diversity of LINEs from five clades, Rex1, L2, CR1, L1 and Tx1, in these three species, and the RTE clade was lost in X. tropicalis. It is clear that elements classified as Rex are distributed in distinct clades. The evolutionary pattern of Rex1 elements denote a complex evolution with independent losses of families and some horizontal transfer events between fishes and amphibians which were supported not only by the phylogenetic inconsistencies but also by the very low Ks values found for the TE sequences. The data obtained here update the knowledge of the LINEs diversity in X. laevis and represent the first study of TEs in P. carvalhoi.


Asunto(s)
Pipidae , Animales , Elementos Transponibles de ADN/genética , Evolución Molecular , Genoma , Genómica , Filogenia , Pipidae/genética , Retroelementos/genética
6.
G3 (Bethesda) ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34792579

RESUMEN

Anuran genomes have a large number and diversity of transposable elements, but are little explored, mainly in relation to their molecular structure and evolutionary dynamics. Here, we investigated the retrotransposons containing tyrosine recombinase (YR) (order DIRS) in the genome of Xenopus tropicalis and Xenopus laevis. These anurans show 2n = 20 and the 2n = 36 karyotypes, respectively. They diverged about 48 million years ago (mya) and X. laevis had an allotetraploid origin (around 17-18 mya). Our investigation is based on the analysis of the molecular structure and the phylogenetic relationships of 95 DIRS families of Xenopus belonging to DIRS-like and Ngaro-like superfamilies. We were able to identify molecular signatures in the 5' and 3' noncoding terminal regions, preserved open reading frames, and conserved domains that are specific to distinguish each superfamily. We recognize two ancient amplification waves of DIRS-like elements that occurred in the ancestor of both species and a higher density of the old/degenerate copies detected in both subgenomes of X. laevis. More recent amplification waves are seen in X. tropicalis (less than 3.2 mya) and X. laevis (around 10 mya) corroborating with transcriptional activity evidence. All DIRS-like families were found in both X. laevis subgenomes, while a few were most represented in the L subgenome. Ngaro-like elements presented less diversity and quantity in X. tropicalis and X. laevis genomes, although potentially active copies were found in both species and this is consistent with a recent amplification wave seen in the evolutionary landscape. Our findings highlight a differential diversity-level and evolutionary dynamics of the YR retrotransposons in X. tropicalis and X. laevis species expanding our comprehension of the behavior of these elements in both genomes during the diversification process.


Asunto(s)
Genoma , Retroelementos , Animales , Filogenia , Retroelementos/genética , Xenopus/genética , Xenopus laevis/genética
7.
Genetica ; 149(5-6): 335-342, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34383169

RESUMEN

Transposable elements (TEs) are important components of eukaryotic genomes and compose around 30% of the genome of Rhinella marina, an invasive toad species. Considering the possible role of TEs in the adaptation of populations, we have analyzed the expression of TEs in publicly available spleen tissue transcriptomic data generated for this species after immune and stress challenge. By analyzing the transcriptome assembly, we detected a high number of TE segments. Moreover, some distinct TE families were differentially expressed in some conditions. Our result shows that several TEs are capable of being transcribed in R. marina and they could help to generate a rapid response of specimens to the environment. Also, we can suggest that these TEs could be activated in the germinative cells as well producing variability to be selected and shaped by the evolutionary processes behind the success of this invasive species. Thus, the TEs are important targets for investigation in the context of R. marina adaptation.


Asunto(s)
Bufo marinus/genética , Bufo marinus/inmunología , Elementos Transponibles de ADN/genética , Elementos Transponibles de ADN/inmunología , Estrés Fisiológico/genética , Estrés Fisiológico/inmunología , Animales , Femenino , Masculino
8.
Genet Mol Biol ; 44(2): e20200301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33751017

RESUMEN

The nominal anuran species Crossodactylus gaudichaudii Duméril and Bibron, 1841 and Crossodactylus aeneus Müller, 1924 are indistinguishable based on adult and larval morphology, being subject of taxonomic doubts. Here, we describe the karyotypes of C. gaudichaudii and C. aeneus, using classical and molecular cytogenetic markers. In addition, we used sequences of the H1 mitochondrial DNA to infer their phylogenetic relationships by Maximum Likelihood (ML) and Maximum Parsimony (MP) approaches and species delimitation test (by bPTP approach). The karyotypic data do not differentiate C. gaudichaudii and C. aeneus in any of the chromosome markers assessed. In both phylogenetic analyses, C. gaudichaudii and C. aeneus were recovered into a strongly supported clade. The species delimitation analysis recovered the specimens assigned to C. gaudichaudii and C. aeneus as a single taxonomic unit. Taken the cytogenetic and genetic results together with previous studies of internal and external morphology of tadpoles and biacoustic pattern, C. gaudichaudii and C. aeneus could not be differentiated, which supports the hypothesis that they correspond to the same taxonomic unit, with C. aeneus being a junior synonym of C. gaudichaudii.

9.
PLoS One ; 16(1): e0245128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33439901

RESUMEN

Cycloramphus bolitoglossus (Werner, 1897) is a rare species with a low population density in the Serra do Mar region of Paraná and Santa Catarina, in southern Brazil. Currently, it has been assigned to the Near Threatened (NT) category in the Brazilian List of Endangered Animal Species. Here, we described the karyotype of this species for the first time and investigated the patterns of some repetitive DNA classes in the chromosomes using molecular cytogenetic approaches. We isolated, sequenced and mapped the 5S rDNA and the satellite DNA PcP190 of C. bolitoglossus, as well as mapped the telomeric sequences and seven microsatellites motifies [(GA)15, (CA)15, (GACA)4, (GATA)8, (CAG)10, (CGC)10, and (GAA)]10. Cycloramphus bolitoglossus has 2n = 26 chromosomes and a fundamental number (FN) equal to 52, with a highly conserved karyotype compared to other genus members. Comparative cytogenetic under the phylogenetic context of genus allowed evolutionary interpretations of the morphological changes in the homologs of pairs 1, 3, and 6 along with the evolutionary history of Cycloramphus. Two subtypes of 5S rDNA type II were isolated in C. bolitoglossus genome, and several comparative analysis suggests mixed effects of concerted and birth-and-death evolution acting in this repetitive DNA. The 5S rDNA II subtype "a" and "b" was mapped on chromosome 1. However, their different position along chromosome 1 provide an excellent chromosome marker for future studies. PcP190 satellite DNA, already reported for species of the families Hylidae, Hylodidae, Leptodactylidae, and Odontophrynidae, is scattered throughout the C. bolitoglossus genome, and even non-heterochromatic regions showed hybridization signals using the PcP190 probe. Molecular analysis suggests that PcP190 satellite DNA exhibit a high-level of homogenization of this sequence in the genome of C. bolitoglossus. The PcP190 satDNA from C. bolitoglossus represents a novel sequence group, compared to other anurans, based on its hypervariable region. Overall, the present data on repetitive DNA sequences showed pseudogenization evidence and corroborated the hypothesis of the emergence of satDNA from rDNA 5S clusters. These two arguments that reinforced the importance of the birth-and-death evolutionary model to explain 5S rDNA patterns found in anuran genomes.


Asunto(s)
Mapeo Cromosómico , Cromosomas/genética , ADN Satélite , Evolución Molecular , Animales , Anuros , Filogenia
10.
Front Genet ; 11: 637, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793276

RESUMEN

The large amphibian genomes contain numerous repetitive DNA components that have played an important role in the karyotypic diversification of this vertebrate group. Hypotheses based on the presumable primitive karyotype (2n = 20) of the anurans of the family Pipidae suggest that they have evolved principally through intrachromosomal rearrangements. Pipa is the only South American pipid, while all the other genera are found in Africa. The divergence of the South American lineages from the African ones occurred at least 136 million years ago and is thought to have had a strong biogeographic component. Here, we tested the potential of the repetitive DNA to enable a better understanding of the differentiation of the karyotype among the family Pipidae and to expand our capacity to interpret the chromosomal evolution in this frog family. Our results indicate a long history of conservation in the chromosome bearing the H3 histone locus, corroborating inferences on the chromosomal homologies between the species in pairs 6, 8, and 9. The chromosomal distribution of the microsatellite motifs also provides useful markers for comparative genomics at the chromosome level between Pipa carvalhoi and Xenopus tropicalis, contributing new insights into the evolution of the karyotypes of these species. We detected similar patterns in the distribution and abundance of the microsatellite arrangements, which reflect the shared organization in the terminal/subterminal region of the chromosomes between these two species. By contrast, the microsatellite probes detected a differential arrangement of the repetitive DNA among the chromosomes of the two species, allowing longitudinal differentiation of pairs that are identical in size and morphology, such as pairs 1, 2, 4, and 5. We also found evidence of the distinctive composition of the repetitive motifs of the centromeric region between the species analyzed in the present study, with a clear enrichment of the (CA) and (GA) microsatellite motifs in P. carvalhoi. Finally, microsatellite enrichment in the pericentromeric region of chromosome pairs 6, 8, and 9 in the P. carvalhoi karyotype, together with interstitial telomeric sequences (ITS), validate the hypothesis that pericentromeric inversions occurred during the chromosomal evolution of P. carvalhoi and reinforce the role of the repetitive DNA in the remodeling of the karyotype architecture of the Pipidae.

11.
Comp Cytogenet ; 13(4): 325-338, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681462

RESUMEN

Treefrogs of the genus Pithecopus Cope, 1866 exhibit expressive chromosomal homogeneity which contrasts with a high variation frequency of the nucleolus organizer region (NOR) related to the group. Currently, the genus contains eleven species and no chromosomal data are available on P. palliatus Peters, 1873, P. ayeaye Lutz, 1966 and P. megacephalus Miranda-Ribeiro, 1926. Here, we describe the karyotypes of these three species based on Giemsa staining, C-banding, silver impregnation and in situ hybridization (FISH). We were also analyze the evolutionary dynamic of the NOR-bearing chromosome in species of genus under a phylogenetic view. The results indicate that P. palliatus, P. ayeaye, and P. megacephalus have similar karyotypes, which are typical of the genus Pithecopus. In P. palliatus the NOR was detected in the pericentromeric region of pair 9p whereas in P. ayeaye and P. megacephalus we report cases of the multiple NOR sites in karyotypes. In P. ayeaye the NOR was detected in the pericentromeric region of pair 9p in both homologues and additional sites was detected in pairs 3q, 4p, and 8q, all confirmed by FISH experiments. Already in P. megacephalus the NOR sites were detected in pericentromeric region homologues of pair 8q and additionally in one chromosome of pair 13q. A comparative overview of all the Pithecopus karyotypes analyzed up to now indicates the recurrence of the NOR-bearing chromosome pairs and the position of the NORs sites on these chromosomes. We hypothesized that this feature is a result of a polymorphic condition present in the common ancestor of Pithecopus. In such case, the lineages derived from polymorphic ancestor have reached fixation independently after divergence of lineages, resulting in a high level of homoplasy observed in this marker. Our findings help to fill the gaps in the understanding of the karyotype of the genus Pithecopus and reinforce the role of the evolutionary dynamics of the rDNA genes in karyotype diversification in this group.

12.
Comp Cytogenet ; 13(3): 297-309, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649799

RESUMEN

Pipidae is a clade of Anura that diverged relatively early from other frogs in the phylogeny of the group. Pipids have a unique combination of morphological features, some of which appear to represent a mix of adaptations to aquatic life and plesiomorphic characters of Anura. The present study describes the karyotype of Pipa carvalhoi Miranda-Ribeiro, 1937, including morphology, heterochromatin distribution, and location of the NOR site. The diploid number of P. carvalhoi is 2n=20, including three metacentric pairs (1, 4, 8), two submetacentric (2 and 7), three subtelocentric (3, 5, 6), and two telocentric pairs (9 and 10). C-banding detected centromeric blocks of heterochromatin in all chromosome pairs and the NOR detected in chromosome pair 9, as confirmed by FISH using the rDNA 28S probe. The telomeric probes indicated the presence of interstitial telomeric sequences (ITSs), primarily in the centromeric region of the chromosomes, frequently associated with heterochromatin, suggesting that these repeats are a significant component of this region. The findings of the present study provide important insights for the understanding of the mechanisms of chromosomal evolution in the genus Pipa, and the diversification of the Pipidae as a whole.

13.
Front Genet ; 10: 728, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31475035

RESUMEN

Historical processes that have interrupted gene flow between distinct evolutionary lineages have played a fundamental role in the evolution of the enormous diversity of species found in the Neotropical region. Numerous studies have discussed the role of geographic barriers and Pleistocene forest refugia in the diversification of the region's biodiversity. In the present study, we investigated the relative contribution of these different factors to the evolutionary history of Pithecopus nordestinus, a Neotropical tree frog, which is amply distributed in the Brazilian Atlantic Forest and adjacent areas of the Caatinga biome. We used an extensive sample and multilocus DNA sequences to provide an overview of the intraspecific genetic diversity of P. nordestinus, characterize historical diversification patterns, and identify possible phylogenetic splits. We tested different scenarios of diversification based on Pleistocene Refugia and river barrier models using approximate Bayesian computation (ABC) and ecological niche modeling (ENM). The phylogenetic approach indicate the occurrence of processes of phylogeographic divergence in both time and space, related to historical shifts in the course of the São Francisco River during Plio-Pleistocene period, resulting in two principal, highly divergent clades. The ABC model provided strong statistical support for this scenario, confirming the hypothesis that the São Francisco River acted as an effective geographical barrier during vicariant events in the evolutionary history of P. nordestinus. We believe that the climatic changes that occurred during the Pleistocene also played a secondary role in the genetic signatures identified, reinforcing the divergence of populations isolated by physical barriers. These findings reinforce the conclusion that the two models of diversification (geographic barriers and refugia) are not mutually exclusive in the Neotropical domain but may interact extensively during the diversification of species on a regional scale.

14.
Genet Mol Biol ; 42(2): 445-451, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31259364

RESUMEN

The genus Rhinella is one of the most diverse groups of bufonid toads, currently composed by 93 valid species and naturally distributed throughout different Neotropical ecoregions. Here, we analyze nine Brazilian populations of toads representing species of the Rhinella margaritifera and Rhinella marina groups. These new data include the first description of the R. hoogmoedi and R. proboscidae karyotypes, as well as other taxonomically unresolved forms. Chromosomal analysis of the populations revealed pronounced chromosomal uniformity (2n=22), including the diploid number and chromosomal morphology. Three different NOR-bearing chromosomes were identified: in the subterminal region of pair 10q in R. hoogmoedi, Rhinella sp. 1 and Rhinella sp. 2, in subterminal region of 7p in R. proboscidae and Rhinella cf. margaritifera while in R. henseli and R. icterica was detected in interstitial region of 7p. Karyotypic uniformity of the genus permits the inference of interspecific chromosome homologies and evolutionary changes in the NOR-bearing chromosome may represent an informative character in species group level. The review of the cytogenetic data of the Rhinella species together with the new karyotypes reported here contributes to the understanding of the chromosomal evolution of these toads, which karyotypes are highly conserved despite the ample distribution of many forms.

15.
Zebrafish ; 15(5): 504-514, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30048232

RESUMEN

The repetitive DNAs are the expressive substrate to genomic evolution and directly related to chromosomal diversification in eukaryote, including fishes. Ancistrus is an interesting group for studies about interplay between repetitive DNA and karyotype evolution, given its extensive chromosomal variation. In this study, we aimed to understand the evolutionary dynamics in genome of the distinct Ancistrus populations of the Paraná basin to the contribution of three classes of repetitive DNA sequences. Nucleotide sequence was isolated, characterized the nonlong terminal repeat (non-LTR) retrotransposable Rex-3, and evaluated the chromosomal organization in the Ancistrus populations. In addition, we also mapped microsatellite repeats on chromosomes. A high conserved level of the Rex-3 element was presented in Ancistrus genome sequences to record in other fish genomes. We recognized also five domains conserved in the amino acid sequence presumed from nucleotide sequence of the reverse transcriptase fragment, which indicates that it is potentially active in the genome. The physical mapping using the Rex-3 as probe revealed signals scattered throughout the chromosomes of all the Ancistrus specimens, while the microsatellite probes hybridized preferentially in the subterminal and interstitial regions. Physical mapping also reveals interplay between these two classes of repetitive DNA in some chromosome pairs. Besides, the spreading of Rex-3 signals in adjacencies of the 5S recombinant DNA (rDNA) sites could reflect their role in the dispersion of these regions. Our findings provide important insights into the mechanisms of karyotype diversification in the genus Ancistrus, which involve these repetitive sequences.


Asunto(s)
Bagres/genética , Cromosomas , Cariotipo , Repeticiones de Microsatélite , Retroelementos , Animales , Mapeo Cromosómico , Biología Computacional , Análisis Citogenético , ARN Ribosómico 5S
16.
PLoS One ; 12(9): e0184631, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28953911

RESUMEN

The Neotropical frog genus Pithecopus comprises currently 10 species. A recent molecular phylogeny suggested the existence of two subclades within it, one of them including P. palliatus, P. azureus, P. hypochondrialis, and P. nordestinus (lowland species). Herein we describe a new species of this subclade from Pontal do Araguaia, in the Brazilian Cerrado in the Mato Grosso state. Recognition of the new species is supported by adult morphology, advertisement call and molecular data. The new species differs from Pithecopus highland species by its smaller head width and lack of the reticulate pattern on flanks. From lowland species, the new form differs by being significantly smaller in snout vent-length, advertisement call with the greatest number of pulses, and high genetic distance. Interestingly, we also report on occurrence of P. hypochondrialis (its sister species) at an adjacent site (about 3km). Also, we report on the occurrence of the new species in the Chapada dos Guimarães and Santa Terezinha, both also in the Mato Grosso state.


Asunto(s)
Anuros/clasificación , Biodiversidad , Animales , Brasil , Ecosistema , Filogenia
17.
Comp Cytogenet ; 10(4): 625-636, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28123683

RESUMEN

Ancistrus Kner, 1854 is a diverse catfish genus, currently comprising 66 valid species, but karyotype data were recorded for 33 species, although only ten have their taxonomic status defined. Considerable karyotype diversity has been found within this genus, with 2n varying from 34 to 54 and structural variability including heteromorphic sex chromosomes. In many cases, uncertainty on the taxonomic status of the study populations hampers reliable interpretation of the complex chromosomal evolutionary history of the group. This study aims to present the first karyotype data for a population of the Ancistrus sp. collected in Criminoso stream (tributary of the Paraguay River Basin, Mato Grosso do Sul, Brazil) in which a combination of different chromosomal markers was used and results integrated in broad discussion on karyotype evolution in the genus. The specimens presented 2n=42 with 18m+16sm+8st and a single NOR revealed by silver nitrate and fluorescence in situ hybridization (FISH) with 18S rDNA probe, located in pair No. 10. Clusters of 5S rDNA were located in the pericentromeric region of three chromosomes: pair No. 1 (metacentric) and one of the homologues of the nucleolar pair No. 10. Heterogeneity in the molecular composition of the heterochromatin was confirmed by the association of C-banding and fluorochrome CMA3/DAPI-staining. Exploring the differential composition of constitutive heterochromatin in Ancistrus may provide an important perspective to understand genome organization and evolution within this group. Our data reinforce the chromosomal diversity present in Ancistrus genus and we discuss the potential sources these variation. The karyotype structure of Ancistrus sp. "Criminoso stream" appears to be consistent with the existence of a new candidate species.

18.
Mol Cytogenet ; 7(1): 22, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24602295

RESUMEN

BACKGROUND: The combination of classical cytogenetics with molecular techniques represents a powerful approach for the comparative analysis of the genome, providing data for the systematic identification of chromosomal homologies among species and insights into patterns of chromosomal evolution within phylogenetically related groups. Here, we present cytogenetic data on four species of Neotropical treefrogs of the genus Phyllomedusa (P. vaillantii, P. tarsius, P. distincta, and P. bahiana), collected in Brazil and Ecuador, with the aim of contributing to the understanding of the chromosomal diversification of this genus. RESULTS: With the exception of P. tarsius, which presented three telocentric pairs, all the species analyzed had conservative karyotypic features. Heterochromatic patterns in the genomes of these species revealed by C-banding and fluorochrome staining indicated the presence of a large number of non-centromeric blocks. Using the Ag-NOR method and FISH with an rDNA 28S probe, we detected NOR in the pericentromeric region of the short arm of pair 7 in P. vaillantii, pair 1 in P. tarsius, chromosomes 1 and 9 in P. distincta, and in chromosome 9 in P. bahiana, in addition to the presence of NOR in one homologue of chromosome pair 10 in some individuals of this species. As expected, the telomeric probe detected the terminal regions of the chromosomes of these four species, although it also detected Interstitial Telomeric Sequences (ITS) in some chromosomes of the P. vaillantii, P. distincta and P. bahiana karyotypes. CONCLUSION: A number of conservative chromosomal structures permitted the recognition of karyotypic homologies. The data indicate that the presence of a NOR-bearing chromosome in pair 9 is the plesiomorphic condition in the P. burmeisteri group. The interspecific and intraspecific variation in the number and location of rDNA sites reflects the rapid rate of evolution of this character in Phyllomedusa. The ITS detected in this study does not appear to be a remnant of structural chromosome rearrangements. Telomeric repeats were frequently found in association with heterochromatin regions, primarily in the centromeres, which suggests that (TTAGGG)n repeats might be an important component of this heterochromatin. We propose that the ITSs originated independently during the chromosomal evolution of these species and may provide important insights into the role of these repeats in vertebrate karyotype diversification.

19.
BMC Genet ; 14: 70, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23937545

RESUMEN

BACKGROUND: The taxonomic and phylogenetic relationships of the genus Phyllomedusa have been amply discussed. The marked morphological similarities among some species hamper the reliable identification of specimens and may often lead to their incorrect taxonomic classification on the sole basis of morphological traits. Phenotypic variation was observed among populations assigned to either P. azurea or P. hypochondrialis. In order to evaluate whether the variation observed in populations assigned to P. hypochondrialis is related to that in genotypes, a cytogenetic analysis was combined with phylogenetic inferences based on mitochondrial and nuclear sequences. RESULTS: The inter- and intra-population variation in the external morphology observed among the specimens analyzed in the present study do not reflect the phylogenetic relationships among populations. A monophyletic clade was recovered, grouping all the specimens identified as P. hypochondrialis and specimens assigned P. azurea from Minas Gerais state. This clade is characterized by conserved chromosomal morphology and a common C-banding pattern. Extensive variation in the nucleolar organizing region (NOR) was observed among populations, with four distinct NOR positions being recognized in the karyotypes. Intra-population polymorphism of the additional rDNA clusters observed in specimens from Barreiras, Bahia state, also highlights the marked genomic instability of the rDNA in the genome of this group. Based on the topology obtained in the phylogenetic analyses, the re-evaluation of the taxonomic status of the specimens from the southernmost population known in Brazil is recommended. CONCLUSIONS: The results of this study support the need for a thorough revision of the phenotypic features used to discriminate P. azurea and P. hypochondrialis. The phylogenetic data presented here also contribute to an extension of the geographic range of P. hypochondrialis, which is known to occur in the Amazon basin and neighboring areas of the Cerrado savanna, where it may be sympatric with P. azurea, within contact zones. The misidentification of specimens may have led to inconsistencies in the original definition of the geographic range of P. azurea. The variability observed in the NOR of P. hypochondrialis reinforces the conclusion that these sites represent hotspots of rearrangement. Intraspecific variation in the location of these sites is the result of constant rearrangements that are not detected by classical cytogenetic methods or are traits of an ancestral, polymorphic karyotype, which would not be phylogenetically informative for this group.


Asunto(s)
Anuros/clasificación , Cromosomas , Filogenia , Animales , Anuros/genética , Cariotipificación , Región Organizadora del Nucléolo
20.
Hereditas ; 149(1): 34-40, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22458439

RESUMEN

The genus Phyllomedusa has been the target of regular taxonomic investigations. The species Phyllomedusa nordestina was recently separated from P. hypochondrialis. Morphological variations in the P. rohdei interpopulation have already been reported, suggesting the existence of more than one taxon under that name. In the present study, we have cytogenetically characterized two populations of P. nordestina and one of P. rohdei. Both species displayed 2n = 26 chromosomes with 12 metacentric, 12 submetacentric and 2 subtelocentric chromosomes. The C-banding analyses revealed discrete differences in the quantity of centromeric heterochromatin between the two species. The nucleolus organizer region (NOR) was detected in pair 9 of both species, but is located in the pericentromeric region of the short arm in P. nordestina and in the long arm subtelomeric region of P. rohdei. Chromosomal data from this study indicate karyotypic homeology between the two groups of P. hypochondrialis species and suggest the existence of more than one taxon under the P. rohdei name.


Asunto(s)
Anuros/clasificación , Anuros/genética , Cariotipo , Animales , Bandeo Cromosómico , Análisis Citogenético , Masculino , Región Organizadora del Nucléolo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA