Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Mol Microbiol ; 115(1): 84-98, 2021 01.
Article En | MEDLINE | ID: mdl-32896017

To overcome the metal restriction imposed by the host's nutritional immunity, pathogenic bacteria use high metal affinity molecules called metallophores. Metallophore-mediated metal uptake pathways necessitate complex cycles of synthesis, secretion, and recovery of the metallophore across the bacterial envelope. We recently discovered staphylopine and pseudopaline, two members of a new family of broad-spectrum metallophores important for bacterial survival during infections. Here, we are expending the molecular understanding of the pseudopaline transport cycle across the diderm envelope of the Gram-negative bacterium Pseudomonas aeruginosa. We first explored pseudopaline secretion by performing in vivo quantifications in various genetic backgrounds and revealed the specific involvement of the MexAB-OprM efflux pump in pseudopaline transport across the outer membrane. We then addressed the recovery part of the cycle by investigating the fate of the recaptured metal-loaded pseudopaline. To do so, we combined in vitro reconstitution experiments and in vivo phenotyping in absence of pseudopaline transporters to reveal the existence of a pseudopaline modification mechanism, possibly involved in the metal release following pseudopaline recovery. Overall, our data allowed us to provide an improved molecular model of secretion, recovery, and fate of this important metallophore by P. aeruginosa.


Bacterial Outer Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Bacteria/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Bodily Secretions/metabolism , Drug Resistance, Multiple, Bacterial/drug effects , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Oligopeptides/metabolism
2.
Biochem J ; 476(15): 2221-2233, 2019 08 09.
Article En | MEDLINE | ID: mdl-31300464

In metal-scarce environments, some pathogenic bacteria produce opine-type metallophores mainly to face the host's nutritional immunity. This is the case of staphylopine, pseudopaline and yersinopine, identified in Staphylococcus aureus, Pseudomonas aeruginosa and Yersinia pestis, respectively. Depending on the species, these metallophores are synthesized by two (CntLM) or three enzymes (CntKLM), CntM catalyzing the last step of biosynthesis using diverse substrates (pyruvate or α-ketoglutarate), pathway intermediates (xNA or yNA) and cofactors (NADH or NADPH). Here, we explored the substrate specificity of CntM by combining bioinformatic and structural analysis with chemical synthesis and enzymatic studies. We found that NAD(P)H selectivity is mainly due to the amino acid at position 33 (S. aureus numbering) which ensures a preferential binding to NADPH when it is an arginine. Moreover, whereas CntM from P. aeruginosa preferentially uses yNA over xNA, the staphylococcal enzyme is not stereospecific. Most importantly, selectivity toward α-ketoacids is largely governed by a single residue at position 150 of CntM (S. aureus numbering): an aspartate at this position ensures selectivity toward pyruvate, whereas an alanine leads to the consumption of both pyruvate and α-ketoglutarate. Modifying this residue in P. aeruginosa led to a complete reversal of selectivity. Thus, the diversity of opine-type metallophore is governed by the absence/presence of a cntK gene encoding a histidine racemase, and the amino acid residue at position 150 of CntM. These two simple rules predict the production of a fourth metallophore by Paenibacillus mucilaginosus, which was confirmed in vitro and called bacillopaline.


Bacteria/metabolism , Bacterial Proteins/metabolism , Imidazoles/metabolism , NADP/metabolism , NAD/metabolism , Oligopeptides/metabolism
3.
J Am Chem Soc ; 141(13): 5555-5562, 2019 04 03.
Article En | MEDLINE | ID: mdl-30901200

Enzymatic regulations are central processes for the adaptation to changing environments. In the particular case of metallophore-dependent metal uptake, there is a need to quickly adjust the production of these metallophores to the metal level outside the cell, to avoid metal shortage or overload, as well as waste of metallophores. In Staphylococcus aureus, CntM catalyzes the last biosynthetic step in the production of staphylopine, a broad-spectrum metallophore, through the reductive condensation of a pathway intermediate (xNA) with pyruvate. Here, we describe the chemical synthesis of this intermediate, which was instrumental in the structural and functional characterization of CntM and confirmed its opine synthase properties. The three-dimensional structure of CntM was obtained in an "open" form, in the apo state or as a complex with substrate or product. The xNA substrate appears mainly stabilized by its imidazole ring through a π-π interaction with the side chain of Tyr240. Intriguingly, we found that metals exerted various and sometime antagonistic effects on the reaction catalyzed by CntM: zinc and copper are moderate activators at low concentration and then total inhibitors at higher concentration, whereas manganese is only an activator and cobalt and nickel are only inhibitors. We propose a model in which the relative affinity of a metal toward xNA and an inhibitory binding site on the enzyme controls activation, inhibition, or both as a function of metal concentration. This metal-dependent regulation of a metallophore-producing enzyme might also take place in vivo, which could contribute to the adjustment of metallophore production to the internal metal level.


Imidazoles/metabolism , Metals, Heavy/metabolism , Oxidoreductases/metabolism , Metals, Heavy/chemistry , Models, Molecular , Molecular Conformation , Staphylococcus aureus/enzymology
4.
Sci Rep ; 7(1): 17132, 2017 12 07.
Article En | MEDLINE | ID: mdl-29214991

Metal uptake is vital for all living organisms. In metal scarce conditions a common bacterial strategy consists in the biosynthesis of metallophores, their export in the extracellular medium and the recovery of a metal-metallophore complex through dedicated membrane transporters. Staphylopine is a recently described metallophore distantly related to plant nicotianamine that contributes to the broad-spectrum metal uptake capabilities of Staphylococcus aureus. Here we characterize a four-gene operon (PA4837-PA4834) in Pseudomonas aeruginosa involved in the biosynthesis and trafficking of a staphylopine-like metallophore named pseudopaline. Pseudopaline differs from staphylopine with regard to the stereochemistry of its histidine moiety associated with an alpha ketoglutarate moiety instead of pyruvate. In vivo, the pseudopaline operon is regulated by zinc through the Zur repressor. The pseudopaline system is involved in nickel uptake in poor media, and, most importantly, in zinc uptake in metal scarce conditions mimicking a chelating environment, thus reconciling the regulation of the cnt operon by zinc with its function as the main zinc importer under these metal scarce conditions.


Bacterial Proteins/metabolism , Chelating Agents/metabolism , Oligopeptides/metabolism , Operon , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism , Zinc/metabolism , Bacterial Proteins/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development
5.
Environ Sci Pollut Res Int ; 24(1): 25-32, 2017 Jan.
Article En | MEDLINE | ID: mdl-26769474

Whole-cell biosensors based on the reporter gene system can offer rapid detection of trace levels of organic or metallic compounds in water. They are well characterized in laboratory conditions, but their transfer into technological devices for the surveillance of water networks remains at a conceptual level. The development of a semi-autonomous inline water analyzer stumbles across the conservation of the bacterial biosensors over a period of time compatible with the autonomy requested by the end-user while maintaining a satisfactory sensitivity, specificity, and time response. We focused here on assessing the effect of lyophilization on two biosensors based on the reporter gene system and hosted in Escherichia coli. The reporter gene used here is the entire bacterial luciferase lux operon (luxCDABE) for an autonomous bioluminescence emission without the need to add any substrate. In the cell-survival biosensor that is used to determine the overall fitness of the bacteria when mixed with the water sample, lux expression is driven by a constitutive E. coli promoter PrpoD. In the arsenite biosensor, the arsenite-inducible promoter P ars involved in arsenite resistance in E. coli controls lux expression. Evaluation of the shelf life of these lyophilized biosensors kept at 4 °C over a year evidenced that about 40 % of the lyophilized cells can be revived in such storage conditions. The performances of the lyophilized biosensor after 7 months in storage are maintained, with a detection limit of 0.2 µM arsenite for a response in about an hour with good reproducibility. These results pave the way to the use in tandem of both biosensors (one for general toxicity and one for arsenite contamination) as consumables of an autonomous analyzer in the field.


Arsenites/chemistry , Biosensing Techniques/instrumentation , Escherichia coli/metabolism , Luciferases, Bacterial/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Genes, Reporter , Luciferases, Bacterial/genetics , Operon , Promoter Regions, Genetic , Reproducibility of Results
6.
Environ Sci Pollut Res Int ; 24(1): 52-65, 2017 Jan.
Article En | MEDLINE | ID: mdl-27234828

Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible Pars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.


Arsenites/chemistry , Biosensing Techniques , Deinococcus/metabolism , Escherichia coli/metabolism , Luciferases, Bacterial/metabolism , Arsenites/metabolism , Deinococcus/genetics , Environmental Monitoring/methods , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Genes, Reporter , Luciferases, Bacterial/genetics , Metals, Heavy/toxicity , Promoter Regions, Genetic , Water/chemistry , Water Pollutants, Chemical
7.
Environ Sci Pollut Res Int ; 24(1): 66-72, 2017 Jan.
Article En | MEDLINE | ID: mdl-27838908

The use of biosensors as sensitive and rapid alert systems is a promising perspective to monitor accidental or intentional environmental pollution, but their implementation in the field is limited by the lack of adapted inline water monitoring devices. We describe here the design and initial qualification of an analyzer prototype able to accommodate three types of biosensors based on entirely different methodologies (immunological, whole-cell, and bacteriophage biosensors), but whose responses rely on the emission of light. We developed a custom light detector and a reaction chamber compatible with the specificities of the three systems and resulting in statutory detection limits. The water analyzer prototype resulting from the COMBITOX project can be situated at level 4 on the Technology Readiness Level (TRL) scale and this technical advance paves the way to the use of biosensors on-site.


Bacteria/isolation & purification , Bacteriophages/isolation & purification , Biosensing Techniques/methods , Water/chemistry , Environmental Monitoring , Food Analysis , Light , Water Microbiology , Water Quality
8.
Science ; 352(6289): 1105-9, 2016 May 27.
Article En | MEDLINE | ID: mdl-27230378

Metal acquisition is a vital microbial process in metal-scarce environments, such as inside a host. Using metabolomic exploration, targeted mutagenesis, and biochemical analysis, we discovered an operon in Staphylococcus aureus that encodes the different functions required for the biosynthesis and trafficking of a broad-spectrum metallophore related to plant nicotianamine (here called staphylopine). The biosynthesis of staphylopine reveals the association of three enzyme activities: a histidine racemase, an enzyme distantly related to nicotianamine synthase, and a staphylopine dehydrogenase belonging to the DUF2338 family. Staphylopine is involved in nickel, cobalt, zinc, copper, and iron acquisition, depending on the growth conditions. This biosynthetic pathway is conserved across other pathogens, thus underscoring the importance of this metal acquisition strategy in infection.


Alkyl and Aryl Transferases/metabolism , Amino Acid Isomerases/metabolism , Azetidinecarboxylic Acid/analogs & derivatives , Imidazoles/metabolism , Oxidoreductases/metabolism , Staphylococcus aureus/enzymology , Alkyl and Aryl Transferases/genetics , Amino Acid Isomerases/genetics , Azetidinecarboxylic Acid/metabolism , Biosynthetic Pathways , Cobalt/metabolism , Copper/metabolism , Gene Expression Regulation, Bacterial , Histidine/chemistry , Metabolome , Nickel/metabolism , Operon , Oxidoreductases/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Zinc/metabolism
9.
PLoS One ; 6(11): e26771, 2011.
Article En | MEDLINE | ID: mdl-22096497

Heavy metals such as cadmium (Cd(2+)) affect microbial metabolic processes. Consequently, bacteria adapt by adjusting their cellular machinery. We have investigated the dose-dependent growth effects of Cd(2+) on Rhizobium alamii, an exopolysaccharide (EPS)-producing bacterium that forms a biofilm on plant roots. Adsorption isotherms show that the EPS of R. alamii binds cadmium in competition with calcium. A metabonomics approach based on ion cyclotron resonance Fourier transform mass spectrometry has showed that cadmium alters mainly the bacterial metabolism in pathways implying sugars, purine, phosphate, calcium signalling and cell respiration. We determined the influence of EPS on the bacterium response to cadmium, using a mutant of R. alamii impaired in EPS production (MSΔGT). Cadmium dose-dependent effects on the bacterial growth were not significantly different between the R. alamii wild type (wt) and MSΔGT strains. Although cadmium did not modify the quantity of EPS isolated from R. alamii, it triggered the formation of biofilm vs planktonic cells, both by R. alamii wt and by MSΔGT. Thus, it appears that cadmium toxicity could be managed by switching to a biofilm way of life, rather than producing EPS. We conclude that modulations of the bacterial metabolism and switching to biofilms prevails in the adaptation of R. alamii to cadmium. These results are original with regard to the conventional role attributed to EPS in a biofilm matrix, and the bacterial response to cadmium.


Biofilms/drug effects , Cadmium/toxicity , Polysaccharides, Bacterial/biosynthesis , Rhizobium/drug effects , Rhizobium/metabolism , Rhizobium/genetics , Rhizobium/growth & development
10.
PLoS One ; 6(6): e21442, 2011.
Article En | MEDLINE | ID: mdl-21738665

Enzymes are versatile catalysts in laboratories and on an industrial scale; improving their immobilization would be beneficial to broadening their applicability and ensuring their (re)use. Lipid-coated nano-magnets produced by magnetotactic bacteria are suitable for a universally applicable single-step method of enzyme immobilization. By genetically functionalizing the membrane surrounding these magnetite particles with a phosphohydrolase, we engineered an easy-to-purify, robust and recyclable biocatalyst to degrade ethyl-paraoxon, a commonly used pesticide. For this, we genetically fused the opd gene from Flavobacterium sp. ATCC 27551 encoding a paraoxonase to mamC, an abundant protein of the magnetosome membrane in Magnetospirillum magneticum AMB-1. The MamC protein acts as an anchor for the paraoxonase to the magnetosome surface, thus producing magnetic nanoparticles displaying phosphohydrolase activity. Magnetosomes functionalized with Opd were easily recovered from genetically modified AMB-1 cells: after cellular disruption with a French press, the magnetic nanoparticles are purified using a commercially available magnetic separation system. The catalytic properties of the immobilized Opd were measured on ethyl-paraoxon hydrolysis: they are comparable with the purified enzyme, with K(m) (and k(cat)) values of 58 µM (and 178 s(-1)) and 43 µM (and 314 s(-1)) for the immobilized and purified enzyme respectively. The Opd, a metalloenzyme requiring a zinc cofactor, is thus properly matured in AMB-1. The recycling of the functionalized magnetosomes was investigated and their catalytic activity proved to be stable over repeated use for pesticide degradation. In this study, we demonstrate the easy production of functionalized magnetic nanoparticles with suitably genetically modified magnetotactic bacteria that are efficient as a reusable nanobiocatalyst for pesticides bioremediation in contaminated effluents.


Biodegradation, Environmental , Magnetosomes/metabolism , Magnetospirillum/metabolism , Nanoparticles
11.
Mol Genet Genomics ; 273(1): 10-9, 2005 Mar.
Article En | MEDLINE | ID: mdl-15711971

A novel Arabidopsis thaliana gene (AtNADK-1) was identified based on its response to radiation and oxidative stress. Levels of AtNADK-1 mRNA increase eight-fold following exposure to ionising radiation and are enhanced three-fold by treatment with hydrogen peroxide. The gene also appears to be differentially regulated during compatible and incompatible plant-pathogen interactions in response to Pseudomonas syringae pv. tomato. The full-length AtNADK-1 cDNA encodes a 58-kDa protein that shows high sequence homology to the recently defined family of NAD(H) kinases. Recombinant AtNADK-1 utilises ATP to phosphorylate both NAD and NADH, showing a two-fold preference for NADH. Using reverse genetics, we demonstrate that AtNADK-1 deficient plants display enhanced sensitivity to gamma irradiation and to paraquat-induced oxidative stress. Our results indicate that this novel NAD(H) kinase may contribute to the maintenance of redox status in Arabidopsis thaliana.


Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Oxidative Stress/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases/metabolism , Amino Acid Sequence , Anthocyanins/metabolism , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Base Sequence , DNA Primers , DNA Transposable Elements/genetics , DNA, Complementary/genetics , Electrophoresis, Polyacrylamide Gel , Hydrogen Peroxide/pharmacology , Molecular Sequence Data , Phosphotransferases/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Pseudomonas syringae , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA
...