Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
J Exp Clin Cancer Res ; 43(1): 137, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711119

BACKGROUND: The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS: Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS: We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models.  CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.


Alcohol Oxidoreductases , DNA-Binding Proteins , Melanoma , Humans , Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Animals , Mice , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Melanoma/genetics , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Xenograft Model Antitumor Assays
2.
Cell Death Dis ; 14(9): 613, 2023 09 19.
Article En | MEDLINE | ID: mdl-37723219

The ß2-Adrenergic receptor (ß2-ARs) is a cell membrane-spanning G protein-coupled receptors (GPCRs) physiologically involved in stress-related response. In many cancers, the ß2-ARs signaling drives the tumor development and transformation, also promoting the resistance to the treatments. In HNSCC cell lines, the ß2-AR selective inhibition synergistically amplifies the cytotoxic effect of the MEK 1/2 by affecting the p38/NF-kB oncogenic pathway and contemporary reducing the NRF-2 mediated antioxidant cell response. In this study, we aimed to validate the anti-tumor effect of ß2-AR blockade and the synergism with MEK/ERK and EGFR pathway inhibition in a pre-clinical orthotopic mouse model of HNSCC. Interestingly, we found a strong ß2-ARs expression in the tumors that were significantly reduced after prolonged treatment with ß2-Ars inhibitor (ICI) and EGFR mAb Cetuximab (CTX) in combination. The ß2-ARs down-regulation correlated in mice with a significant tumor growth delay, together with the MAPK signaling switch-off caused by the blockade of the MEK/ERK phosphorylation. We also demonstrated that the administration of ICI and CTX in combination unbalanced the cell ROS homeostasis by blocking the NRF-2 nuclear translocation with the relative down-regulation of the antioxidant enzyme expression. Our findings highlighted for the first time, in a pre-clinical in vivo model, the efficacy of the ß2-ARs inhibition in the treatment of the HNSCC, remarkably in combination with CTX, which is the standard of care for unresectable HNSCC.


Antioxidants , Head and Neck Neoplasms , Animals , Mice , Squamous Cell Carcinoma of Head and Neck , Oxidative Stress , Antibodies , Cetuximab/pharmacology , Cetuximab/therapeutic use , ErbB Receptors , Mitogen-Activated Protein Kinase Kinases
3.
J Transl Med ; 21(1): 273, 2023 04 21.
Article En | MEDLINE | ID: mdl-37085802

Early in the COVID-19 pandemic, it emerged that the risk of severe outcomes was greater in patients with co-morbidities, including cancer. The huge effort undertaken to fight the pandemic, affects the management of cancer care, influencing their outcome. Despite the high fatality rate of COVID-19 disease in cancer patients, rare cases of temporary or prolonged clinical remission from cancers after SARS-CoV-2 infection have been reported. We have reviewed sixteen case reports of COVID-19 disease with spontaneous cancer reduction of progression. Fourteen cases of remission following viral infections and two after anti-SARS-CoV-2 vaccination. The immune response to COVID-19, may be implicated in both tumor regression, and progression. Specifically, we discuss potential mechanisms which include oncolytic and priming hypotheses, that may have contributed to the cancer regression in these cases and could be useful for future options in cancer treatment.


COVID-19 , Neoplasms , Humans , Pandemics , SARS-CoV-2 , Neoplasms/complications , Neoplasms/therapy
4.
Nutrients ; 15(3)2023 Jan 21.
Article En | MEDLINE | ID: mdl-36771270

Trimethylamine N-oxide (TMAO) is a microbial metabolite derived from nutrients, such as choline, L-carnitine, ergothioneine and betaine. Recently, it has come under the spotlight for its close interactions with gut microbiota and implications for gastrointestinal cancers, cardiovascular disease, and systemic inflammation. The culprits in the origin of these pathologies may be food sources, in particular, high fat meat, offal, egg yolk, whole dairy products, and fatty fish, but intercalated between these food sources and the production of pro-inflammatory TMAO, the composition of gut microbiota plays an important role in modulating this process. The aim of this review is to explain how the gut microbiota interacts with the conversion of specific compounds into TMA and its oxidation to TMAO. We will first cover the correlation between TMAO and various pathologies such as dysbiosis, then focus on cardiovascular disease, with a particular emphasis on pro-atherogenic factors, and then on systemic inflammation and gastrointestinal cancers. Finally, we will discuss primary prevention and therapies that are or may become possible. Possible treatments include modulation of the gut microbiota species with diets, physical activity and supplements, and administration of drugs, such as metformin and aspirin.


Cardiovascular Diseases , Microbiota , Neoplasms , Animals , Choline/metabolism , Methylamines/metabolism , Inflammation , Neoplasms/drug therapy , Neoplasms/prevention & control
5.
J Cardiovasc Dev Dis ; 9(12)2022 Nov 28.
Article En | MEDLINE | ID: mdl-36547420

Anthracyclines are essential adjuvant therapies for a variety of cancers, particularly breast, gastric and esophageal cancers. Whilst prolonging cancer-related survival, these agents can induce drug-related cardiotoxicity. Spirulina, Reishi (Ganoderma lucidum) and Moringa are three nutraceuticals with anti-inflammatory effects that are currently used in cancer patients as complementary and alternative medicines to improve quality of life and fatigue. We hypothesize that the nutraceutical combination of Spirulina, Reishi and Moringa (Singo) could reduce inflammation and cardiotoxicity induced by anthracyclines. Female C57Bl/6 mice were untreated (Sham, n = 6) or treated for 7 days with short-term doxorubicin (DOXO, n = 6) or Singo (Singo, n = 6), or pre-treated with Singo for 3 days and associated with DOXO for remaining 7 days (DOXO−Singo, n = 6). The ejection fraction and radial and longitudinal strain were analyzed through transthoracic echocardiography (Vevo 2100, Fujifilm, Tokyo, Japan). The myocardial expressions of NLRP3, DAMPs (galectin-3 and calgranulin S100) and 13 cytokines were quantified through selective mouse ELISA methods. Myocardial fibrosis, necrosis and hypertrophy were analyzed through immunohistochemistry (IHC). Human cardiomyocytes were exposed to DOXO (200 nM) alone or in combination with Singo (at 10, 25 and 50 µg/mL) for 24 and 48 h. Cell viability and inflammation studies were also performed. In preclinical models, Singo significantly improved ejection fraction and fractional shortening. Reduced expressions of myocardial NLRP3 and NF-kB levels in cardiac tissues were seen in DOXO−Singo mice vs. DOXO (p < 0.05). The myocardial levels of calgranulin S100 and galectin-3 were strongly reduced in DOXO−Singo mice vs. DOXO (p < 0.05). Immunohistochemistry analysis indicates that Singo reduces fibrosis and hypertrophy in the myocardial tissues of mice during exposure to DOXO. In conclusion, in the preclinical model of DOXO-induced cardiotoxicity, Singo is able to improve cardiac function and reduce biomarkers involved in heart failure and fibrosis.

6.
J Transl Med ; 20(1): 290, 2022 06 27.
Article En | MEDLINE | ID: mdl-35761360

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive disease characterized by high risk of relapse and development of resistance to different chemotherapy agents. Several targeted therapies have been investigated in TNBC with modest results in clinical trials. Among these, PI3K/AKT inhibitors have been evaluated in addition to standard therapies, yielding conflicting results and making attempts on elucidating inherent mechanisms of resistance of great interest. Increasing evidences suggest that PI3K/AKT inhibitors can induce autophagy in different cancers. Autophagy represents a supposed mechanism of drug-resistance in aggressive tumors, like TNBC. We, therefore, investigated if two PI3K/AKT inhibitors, ipatasertib and taselisib, could induce autophagy in breast cancer models, and whether chloroquine (CQ), a well known autophagy inhibitor, could potentiate ipatasertib and taselisib anti-cancer effect in combination with conventional chemotherapy. METHODS: The induction of autophagy after ipatasertib and taselisib treatment was evaluated in MDAMB231, MDAM468, MCF7, SKBR3 and MDAB361 breast cancer cell lines by assaying LC3-I conversion to LC3-II through immunoblotting and immunofluorescence. Other autophagy-markers as p62/SQSTM1 and ATG5 were evaluated by immunoblotting. Synergistic antiproliferative effect of double and triple combinations of ipatasertib/taselisib plus CQ and/or paclitaxel were evaluated by SRB assay and clonogenic assay. Anti-apoptotic effect of double combination of ipatasertib/taselisib plus CQ was evaluated by increased cleaved-PARP by immunoblot and by Annexin V- flow cytometric analysis. In vivo experiments were performed on xenograft model of MDAMB231 in NOD/SCID mice. RESULTS: Our results suggested that ipatasertib and taselisib induce increased autophagy signaling in different breast cancer models. This effect was particularly evident in PI3K/AKT resistant TNBC cells, where the inhibition of autophagy by CQ potentiates the therapeutic effect of PI3K/AKT inhibitors in vitro and in vivo TNBC models, synergizing with taxane-based chemotherapy. CONCLUSION: These data suggest that inhibition of authophagy with CQ could overcome mechanism of drug resistance to PI3K/AKT inhibitors plus paclitaxel in TNBC making the evaluation of such combinations in clinical trials warranted.


Chloroquine , Drug Resistance, Neoplasm , Phosphoinositide-3 Kinase Inhibitors , Triple Negative Breast Neoplasms , Animals , Autophagy , Cell Line, Tumor , Cell Proliferation , Chloroquine/pharmacology , Chloroquine/therapeutic use , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Triple Negative Breast Neoplasms/drug therapy
8.
J Exp Clin Cancer Res ; 41(1): 83, 2022 Mar 03.
Article En | MEDLINE | ID: mdl-35241126

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) represents an unmet clinical need due to the very poor prognosis and the lack of effective therapy. Here we investigated the potential of domatinostat (4SC-202), a new class I histone deacetylase (HDAC) inhibitor, currently in clinical development, to sensitize PDAC to first line standard gemcitabine (G)/taxol (T) doublet chemotherapy treatment. METHODS: Synergistic anti-tumor effect of the combined treatment was assessed in PANC1, ASPC1 and PANC28 PDAC cell lines in vitro as well as on tumor spheroids and microtissues, by evaluating combination index (CI), apoptosis, clonogenic capability. The data were confirmed in vivo xenograft models of PANC28 and PANC1 cells in athymic mice. Cancer stem cells (CSC) targeting was studied by mRNA and protein expression of CSC markers, by limiting dilution assay, and by flow cytometric and immunofluorescent evaluation of CSC mitochondrial and cellular oxidative stress. Mechanistic role of forkhead box M1 (FOXM1) and downstream targets was evaluated in FOXM1-overexpressing PDAC cells. RESULTS: We showed that domatinostat sensitized in vitro and in vivo models of PDAC to chemotherapeutics commonly used in PDAC patients management and particularly to GT doublet, by targeting CSC compartment through the induction of mitochondrial and cellular oxidative stress. Mechanistically, we showed that domatinostat hampers the expression and function of FOXM1, a transcription factor playing a crucial role in stemness, oxidative stress modulation and DNA repair. Domatinostat reduced FOXM1 protein levels by downregulating mRNA expression and inducing proteasome-mediated protein degradation thus preventing nuclear translocation correlated with a reduction of FOXM1 target genes. Furthermore, by overexpressing FOXM1 in PDAC cells we significantly reduced domatinostat-inducing oxidative mitochondrial and cellular stress and abolished GT sensitization, both in adherent and spheroid cells, confirming FOXM1 crucial role in the mechanisms described. Finally, we found a correlation of FOXM1 expression with poor progression free survival in PDAC chemotherapy-treated patients. CONCLUSIONS: Overall, we suggest a novel therapeutic strategy based on domatinostat to improve efficacy and to overcome resistance of commonly used chemotherapeutics in PDAC that warrant further clinical evaluation.


Benzamides , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Benzamides/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Gene Expression Regulation, Neoplastic , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism
9.
Mol Oncol ; 15(4): 1005-1023, 2021 04.
Article En | MEDLINE | ID: mdl-33331136

Acquired resistance to platinum (Pt)-based therapies is an urgent unmet need in the management of epithelial ovarian cancer (EOC) patients. Here, we characterized by an unbiased proteomics method three isogenic EOC models of acquired Pt resistance (TOV-112D, OVSAHO, and MDAH-2774). Using this approach, we identified several differentially expressed proteins in Pt-resistant (Pt-res) compared to parental cells and the chaperone HSP90 as a central hub of these protein networks. Accordingly, up-regulation of HSP90 was observed in all Pt-res cells and heat-shock protein 90 alpha isoform knockout resensitizes Pt-res cells to cisplatin (CDDP) treatment. Moreover, pharmacological HSP90 inhibition using two different inhibitors [17-(allylamino)-17-demethoxygeldanamycin (17AAG) and ganetespib] synergizes with CDDP in killing Pt-res cells in all tested models. Mechanistically, genetic or pharmacological HSP90 inhibition plus CDDP -induced apoptosis and increased DNA damage, particularly in Pt-res cells. Importantly, the antitumor activities of HSP90 inhibitors (HSP90i) were confirmed both ex vivo in primary cultures derived from Pt-res EOC patients ascites and in vivo in a xenograft model. Collectively, our data suggest an innovative antitumor strategy, based on Pt compounds plus HSP90i, to rechallenge Pt-res EOC patients that might warrant further clinical evaluation.


Antineoplastic Agents/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Platinum/therapeutic use , Animals , Benzoquinones , Cell Line, Tumor , Cisplatin/therapeutic use , Female , Humans , Lactams, Macrocyclic , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Proteomics , Triazoles , Xenograft Model Antitumor Assays
10.
Front Cell Dev Biol ; 8: 732, 2020.
Article En | MEDLINE | ID: mdl-33015030

Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a devastating malignancy with a poor prognosis. The combination of cisplatin (CDDP) plus cetuximab (CX) is one of the standard first-line treatments in this disease. However, this therapeutic regimen is often associated with high toxicity and resistance, suggesting that new combinatorial strategies are needed to improve its therapeutic index. In our study, we evaluated the antitumor effects of valproic acid (VPA), a well-known antiepileptic agent with histone deacetylase inhibitory activity, in combination with CDDP/CX doublet in head and neck squamous cell carcinoma (HNSCC) models. We demonstrated, in HNSCC cell lines, but not in normal human fibroblasts, that simultaneous exposure to equitoxic doses of VPA plus CDDP/CX resulted in a clear synergistic antiproliferative and pro-apoptotic effects. The synergistic antitumor effect was confirmed in four different 3D-self-assembled spheroid models, suggesting the ability of the combined approach to affect also the cancer stem cells compartment. Mechanistically, VPA enhanced DNA damage in combination treatment by reducing the mRNA expression of ERCC Excision Repair 1, a critical player in DNA repair, and by increasing CDDP intracellular concentration via upregulation at transcriptional level of CDDP influx channel copper transporter 1 and downregulation of the ATPAse ATP7B involved in CDDP-export. Valproic acid also induced a dose-dependent downregulation of epidermal growth factor receptor (EGFR) expression and of MAPK and AKT downstream signaling pathways and prevent CDDP- and/or CX-induced EGFR nuclear translocation, a well-known mechanism of resistance to chemotherapy. Indeed, VPA impaired the transcription of genes induced by non-canonical activity of nuclear EGFR, such as cyclin D1 and thymidylate synthase. Finally, we confirmed the synergistic antitumor effect also in vivo in both heterotopic and orthotopic models, demonstrating that the combined treatment completely blocked HNSCC xenograft tumors growth in nude mice. Overall, the introduction of a safe and generic drug such as VPA into the conventional treatment for R/M HNSCC represents an innovative and feasible antitumor strategy that warrants further clinical evaluation. A phase II clinical trial exploring the combination of VPA and CDDP/CX in R/M HNSCC patients is currently ongoing in our institute.

11.
J Exp Clin Cancer Res ; 39(1): 213, 2020 Oct 08.
Article En | MEDLINE | ID: mdl-33032653

BACKGROUND: Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS: Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS: We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION: Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Neoplastic Stem Cells/drug effects , Prostatic Neoplasms/drug therapy , Transcription Factors/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Movement , Cell Proliferation , Docetaxel/administration & dosage , Drug Resistance, Neoplasm , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Simvastatin/administration & dosage , Tumor Cells, Cultured , Valproic Acid/administration & dosage , Xenograft Model Antitumor Assays
12.
J Exp Clin Cancer Res ; 38(1): 317, 2019 Jul 18.
Article En | MEDLINE | ID: mdl-31319863

BACKGROUND: Molecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes. Atypically large extracellular vesicles (EVs), referred as "Large Oncosomes" (LO), have been identified in highly migratory and invasive PCa cells. We recently developed and characterized the DU145R80 subline, selected from parental DU145 cells as resistant to inhibitors of mevalonate pathway. DU145R80 showed different proteomic profile compared to parental DU145 cells, along with altered cytoskeleton dynamics and a more aggressive phenotype. METHODS: Immunofluorescence staining and western blotting were used to identify blebbing and EVs protein cargo. EVs, purified by gradient ultra-centrifugations, were analyzed by tunable resistive pulse sensing and multi-parametric flow cytometry approach coupled with high-resolution imaging technologies. LO functional effects were tested in vitro by adhesion and invasion assays and in vivo xenograft model in nude mice. Xenograft and patient tumor tissues were analyzed by immunohistochemistry. RESULTS: We found spontaneous blebbing and increased shedding of LO from DU145R80 compared to DU145 cells. LO from DU145R80, compared to those from DU145, carried increased amounts of key-molecules involved in PCa progression including integrin alpha V (αV-integrin). By incubating DU145 cells with DU145R80-derived LO we demonstrated that αV-integrin on LO surface was functionally involved in the increased adhesion and invasion of recipient cells, via AKT. Indeed either the pre-incubation of LO with an αV-integrin blocking antibody, or a specific AKT inhibition in recipient cells are able to revert the LO-induced functional effects. Moreover, DU145R80-derived LO also increased DU145 tumor engraftment in a mice model. Finally, we identified αV-integrin positive LO-like structures in tumor xenografts as well as in PCa patient tissues. Increased αV-integrin tumor expression correlated with high Gleason score and lymph node status. CONCLUSIONS: Overall, this study is the first to demonstrate the critical role of αV-integrin positive LO in PCa aggressive features, adding new insights in biological function of these large EVs and suggesting their potential use as PCa prognostic markers.


Extracellular Vesicles/pathology , Integrin alphaV/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Adhesion , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Extracellular Vesicles/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Nude , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Transplantation , Prostatic Neoplasms/metabolism , Proteomics/methods , Up-Regulation
13.
Mol Cancer Ther ; 18(8): 1405-1417, 2019 08.
Article En | MEDLINE | ID: mdl-31189612

The 5-fluorouracil/cisplatin (5FU/CDDP) combination is one of the most widely used treatment options for several solid tumors. However, despite good anticancer responses, this regimen is often associated with high toxicity and treatment resistance. In our study, we evaluated whether the histone deacetylase inhibitor (HDACi), vorinostat, may induce synergistic antitumor and proapoptotic effects in combination with 5FU/CDDP in squamous cancer cell models. We demonstrated in cancer cell lines, including the intrinsic CDDP-resistant Cal27 cells, that simultaneous exposure to equitoxic doses of vorinostat plus 5FU/CDDP results in strong synergistic antiproliferative and proapoptotic effects related to cell-cycle perturbation and DNA damage induction. These effects were confirmed in vivo in both orthotopic and heterotopic xenograft mouse models of Cal27 cells. Mechanistically, vorinostat reverted 5FU/CDDP-induced EGFR phosphorylation and nuclear translocation, leading to the impairment of nuclear EGFR noncanonical induction of genes such as thymidylate synthase and cyclin D1. These effects were exerted by vorinostat, at least in part, by increasing lysosomal-mediated EGFR protein degradation. Moreover, vorinostat increased platinum uptake and platinated DNA levels by transcriptionally upregulating the CDDP influx channel copper transporter 1 (CTR1). Overall, to our knowledge, this study is the first to demonstrate the ability of vorinostat to inhibit two well-known mechanisms of CDDP resistance, EGFR nuclear translocation and CTR1 overexpression, adding new insight into the mechanism of the synergistic interaction between HDACi- and CDDP-based chemotherapy and providing the rationale to clinically explore this combination to overcome dose-limiting toxicity and chemotherapy resistance.


Active Transport, Cell Nucleus/drug effects , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Fluorouracil/pharmacology , Vorinostat/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Copper Transporter 1/metabolism , DNA Damage , Disease Models, Animal , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Mice , Xenograft Model Antitumor Assays
14.
J Cell Physiol ; 234(6): 9077-9092, 2019 06.
Article En | MEDLINE | ID: mdl-30362533

Although platinum-based chemotherapy remains the standard-of-care for most patients with advanced non-small-cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP-resistant (CPr-A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr-A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum-resistance.


Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Proteomics , Vimentin/metabolism , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Databases, Protein , Endoplasmic Reticulum Stress , Epithelial-Mesenchymal Transition , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Nude , Neoplastic Stem Cells/metabolism , Protein Folding , Protein Interaction Maps , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
15.
Recent Pat Anticancer Drug Discov ; 13(2): 184-200, 2018.
Article En | MEDLINE | ID: mdl-29189178

BACKGROUND: Modifications of lipid metabolism have been progressively accepted as a hallmark of tumor cells and in particular, an elevated lipogenesis has been described in various types of cancers. OBJECTIVE: Important or deregulated activity of the mevalonate pathway has been demonstrated in different tumors and a wide range of studies have suggested that tumor cells are more dependent on the unceasing availability of mevalonate pathway metabolites than their non-malignant complements. METHODS: This study provides an overview of the state of the art of statins treatment on human cancer. RESULTS: In recent times, various actions have been proposed for statins in different physiological and pathological conditions beyond anti-inflammation and neuroprotection activity. Statins have been shown to act through mevalonate-dependent and -independent mechanisms able to affect several tissue functions and modulating specific signal transduction pathways that could account for statin pleiotropic effect. Based on their characteristics, statins represent ideal candidates for repositioning in cancer therapy. CONCLUSION: In this review article, we provide an overview of the current preclinical and clinical status of statins as antitumor agents. In addition, we evaluated various patents that describe the role of mevalonate pathway inhibitors and methods to determine if cancer cells are sensitive to statins treatment.


Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Drug Repositioning/methods , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Mevalonic Acid/antagonists & inhibitors , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Drug Delivery Systems/trends , Drug Repositioning/trends , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Mevalonic Acid/metabolism , Neoplasms/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
16.
J Exp Clin Cancer Res ; 36(1): 177, 2017 Dec 06.
Article En | MEDLINE | ID: mdl-29212503

BACKGROUND: Recurrence with distant metastases has become the predominant pattern of failure in locally advanced rectal cancer (LARC), thus the integration of new antineoplastic agents into preoperative fluoropyrimidine-based chemo-radiotherapy represents a clinical challenge to implement an intensified therapeutic strategy. The present study examined the combination of the histone deacetylase inhibitor (HDACi) valproic acid (VPA) with fluoropyrimidine-based chemo-radiotherapy on colorectal cancer (CRC) cells. METHODS: HCT-116 (p53-wild type), HCT-116 p53-/- (p53-null), SW620 and HT29 (p53-mutant) CRC cell lines were used to assess the antitumor interaction between VPA and capecitabine metabolite 5'-deoxy-5-fluorouridine (5'-DFUR) in combination with radiotherapy and to evaluate the role of p53 in the combination treatment. Effects on proliferation, clonogenicity and apoptosis were evaluated, along with γH2AX foci formation as an indicator for DNA damage. RESULTS: Combined treatment with equipotent doses of VPA and 5'-DFUR resulted in synergistic effects in CRC lines expressing p53 (wild-type or mutant). In HCT-116 p53-/- cells we observed antagonist effects. Radiotherapy further potentiated the antiproliferative, pro-apoptotic and DNA damage effects induced by 5'-DFUR/VPA combination in p53 expressing cells. CONCLUSIONS: These results highlighted the role of VPA as valuable candidate to be added to preoperative chemo-radiotherapy in LARC. On these bases we launched the ongoing phase I/II study of VPA and short-course radiotherapy plus capecitabine as preoperative treatment in low-moderate risk rectal cancer (V-shoRT-R3).


Capecitabine/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/radiotherapy , Tumor Suppressor Protein p53/metabolism , Valproic Acid/therapeutic use , Capecitabine/pharmacology , Colorectal Neoplasms/pathology , Flow Cytometry , Humans , Valproic Acid/pharmacology
17.
BMC Cancer ; 16(1): 918, 2016 11 25.
Article En | MEDLINE | ID: mdl-27884140

BACKGROUND: Recurrent/metastatic squamous cell carcinoma of the head and neck (SCCHN) has a poor prognosis and the combination of cisplatin and cetuximab, with or without 5-fluorouracil, is the gold standard treatment in this stage. Thus, the concomitant use of novel compounds represents a critical strategy to improve treatment results. Histone deacetylase inhibitors (HDACi) enhance the activity of several anticancer drugs including cisplatin and anti-Epidermal Growth Factor Receptor (anti-EGFR) compounds. Preclinical studies in models have shown that vorinostat is able to down regulate Epidermal Growth Factor Receptor (EGFR) expression and to revert epithelial to mesenchimal transition (EMT). Due to its histone deacetylase (HDAC) inhibiting activity and its safe use as a chronic therapy for epileptic disorders, valproic acid (VPA) has been considered a good candidate for anticancer therapy. A reasonable option may be to employ the combination of cisplatin, cetuximab and VPA in recurrent/metastatic SCCHN taking advantage of the possible positive interaction between histone deacetylase inhibitors, cisplatin and/or anti-EGFR. METHOD/DESIGN: V-CHANCE is a phase 2 clinical trial evaluating, in patients with recurrent/metastatic squamous cell carcinoma of the head and neck never treated with first-line chemotherapy, the concomitant standard administration of cisplatin (on day 1, every 3 weeks) and cetuximab (on day 1, weekly), in combination with oral VPA given daily from day -14 with a titration strategy in each patient (target serum level of 50-100 µg/ml). Primary end point is the objective response rate measured according to Response Evaluation Criteria in Solid Tumors (RECIST). Sample size, calculated according to Simon 2 stage minimax design will include 21 patients in the first stage with upper limit for rejection being 8 responses, and 39 patients in the second stage, with upper limit for rejection being 18 responses. Secondary endpoints are time to progression, duration of response, overall survival, safety. Objectives of the translational study are the evaluation on tumor samples of markers of treatment efficacy/resistance (i.e. γH2AX, p21/WAF, RAD51, XRCC1, EGFR, p-EGFR, Ki-67) and specific markers of VPA HDAC inhibitory activity (histones and proteins acetylation, Histone deacetylase isoforms) as well as valproate test, histones and proteins acetylation of peripheral blood mononuclear cell, tested on blood samples at baseline and at different time points during treatment. DISCUSSION: Overall, this study could provide a less toxic and more effective first-line chemotherapy regimen in patients with recurrent/metastatic squamous cell carcinoma of the head and neck by demonstrating the feasibility and efficacy of cisplatin/cetuximab plus valproic acid. Moreover, correlative studies could help to identify responder patients, and will add insights in the mechanism of the synergistic interaction between these agents. EUDRACT NUMBER: 2014-001523-69 TRIAL REGISTRATION: ClinicalTrials.gov number, NCT02624128.


Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Squamous Cell/drug therapy , Cetuximab/administration & dosage , Cisplatin/administration & dosage , Head and Neck Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Valproic Acid/administration & dosage , Administration, Oral , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cetuximab/therapeutic use , Cisplatin/therapeutic use , Drug Administration Schedule , Female , Humans , Male , Neoplasm Metastasis , Neoplasm Recurrence, Local/pathology , Squamous Cell Carcinoma of Head and Neck , Survival Analysis , Treatment Outcome , Valproic Acid/therapeutic use
18.
Oncotarget ; 7(15): 19559-74, 2016 Apr 12.
Article En | MEDLINE | ID: mdl-26862736

ErbB3, a member of the ErbB family receptors, has a key role in the development and progression of several cancers, including non-small cell lung cancer (NSCLC), and in the establishment of resistance to therapies, leading to the development of anti-ErbB3 therapies.In this study we demonstrated, in a set of malignant pleural effusion-derived cultures of NSCLC, the synergistic antitumor effect of a histone deacetylase inhibitor (HDACi), such as vorinostat or valproic acid (VPA), in combination with the anti-ErbB3 monoclonal antibody (MoAb) A3. Synergistic interaction was observed in 2D and in 3D cultures conditions, both in fully epithelial cells expressing all ErbB receptors, and in cells that had undergone epithelial to mesenchymal transition and expressed low levels of ErbB3. We provided evidences suggesting that differential modulation of ErbB receptors by vorinostat or VPA, also at low doses corresponding to plasma levels easily reached in treated patients, is responsible for the observed synergism. In details, we showed in epithelial cells that both vorinostat and VPA induced time- and dose-dependent down-regulation of all three ErbB receptors and of downstream signaling. On the contrary, in A3-resistant mesenchymal cells, we observed time- and dose-dependent increase of mRNA and protein levels as well as surface expression of ErbB3, paralleled by down-regulation of EGFR and ErbB2. Our results suggest that the combination of a HDACi plus an anti-ErbB3 MoAb represents a viable strategy that warrants further evaluation for the treatment of NSCLC patients.


Antibodies, Monoclonal/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Receptor, ErbB-3/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydroxamic Acids/pharmacology , Immunoblotting , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Receptor, ErbB-3/genetics , Receptor, ErbB-3/immunology , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Valproic Acid/pharmacology , Vorinostat
19.
Oncotarget ; 7(7): 7715-31, 2016 Feb 16.
Article En | MEDLINE | ID: mdl-26735339

The prognosis of patients with metastatic breast cancer remains poor, and thus novel therapeutic approaches are needed. Capecitabine, which is commonly used for metastatic breast cancer in different settings, is an inactive prodrug that takes advantage of elevated levels of thymidine phosphorylase (TP), a key enzyme that is required for its conversion to 5-fluororacil, in tumors. We demonstrated that histone deacetylase inhibitors (HDACi), including low anticonvulsant dosage of VPA, induced the dose- and time-dependent up-regulation of TP transcript and protein expression in breast cancer cells, but not in the non-tumorigenic breast MCF-10A cell line. Through the use of siRNA or isoform-specific HDACi, we demonstrated that HDAC3 is the main isoform whose inhibition is involved in the modulation of TP. The combined treatment with capecitabine and HDACi, including valproic acid (VPA), resulted in synergistic/additive antiproliferative and pro-apoptotic effects in breast cancer cells but not in TP-knockout cells, both in vitro and in vivo, highlighting the crucial role of TP in the synergism observed. Overall, this study suggests that the combination of HDACi (e.g., VPA) and capecitabine is an innovative antitumor strategy that warrants further clinical evaluation for the treatment of metastatic breast cancer.


Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Capecitabine/pharmacology , Drug Synergism , Thymidine Phosphorylase/metabolism , Valproic Acid/pharmacology , Animals , Anticonvulsants/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Blotting, Western , Breast Neoplasms/enzymology , Cell Proliferation/drug effects , Chromatin Immunoprecipitation , Drug Therapy, Combination , Female , Humans , Immunoenzyme Techniques , Mice , Mice, Inbred NOD , Mice, SCID , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Thymidine Phosphorylase/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Free Radic Biol Med ; 89: 287-99, 2015 Dec.
Article En | MEDLINE | ID: mdl-26409771

In non-small-cell lung cancer (NSCLC) patients, the activation of alternative pathways contributes to the limited efficacy of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. The present study examines a panel of EGFR wild-type, K-Ras mutated, NSCLC lines, which were all intrinsically resistant to EGFR-TKIs, and demonstrates that the histone deacetylase inhibitor vorinostat can improve the therapeutic efficacy of gefitinib or erlotinib, inducing strong synergistic antiproliferative and pro-apoptotic effects that are paralleled by reactive oxygen species accumulation and by increased DNA damage. By knockdown experiments, we suggested that the up-regulation of voltage-dependent anion-selective channel protein 1 (VDAC1), the major mitochondrial porin of the outer mitochondrial membrane, which was induced by vorinostat and further increased by the combination, could be functionally involved in oxidative stress-dependent apoptosis. Significantly, we also observed the attenuation of the expression of both the enzyme hexokinase1, a negative VDAC1 regulator, and the anti-apoptotic porin VDAC2, only in the combination setting, suggesting convergent mechanisms that enhanced mitochondria-dependent apoptosis by targeting VDAC protein functions. Furthermore, the prosurvival capacities of the cells were also inhibited by the combination treatments, as shown by complete pAKT deactivation, increased GSK3ß expression, and c-Myc down-regulation. Finally, we observed that the combination treatment of vorinostat and either of the EGFR-TKIs induced the down-regulation of the c-Myc-regulated nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor and the up-regulation of the NRF2 repressor Kelch-like ECH-associated protein 1 regulator (KEAP1). These two genes are crucial for the redox stress response, often dysfunctional in NSCLC, and involved in EGFR-TKI resistance. Taken together, these results are the first to demonstrate that altering redox homeostasis is a new mechanism underlying the observed synergism between vorinostat and EGFR TKIs in NSCLC.


Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Synergism , ErbB Receptors/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Hydroxamic Acids/pharmacology , Reactive Oxygen Species/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Apoptosis/drug effects , Blotting, Western , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Gefitinib , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Quinazolines/pharmacology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Voltage-Dependent Anion Channel 1/genetics , Vorinostat
...