Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794171

RESUMEN

Sirtuins (SIRTs) are classified as class III histone deacetylases (HDACs), a family of enzymes that catalyze the removal of acetyl groups from the ε-N-acetyl lysine residues of histone proteins, thus counteracting the activity performed by histone acetyltransferares (HATs). Based on their involvement in different biological pathways, ranging from transcription to metabolism and genome stability, SIRT dysregulation was investigated in many diseases, such as cancer, neurodegenerative disorders, diabetes, and cardiovascular and autoimmune diseases. The elucidation of a consistent number of SIRT-ligand complexes helped to steer the identification of novel and more selective modulators. Due to the high diversity and quantity of the structural data thus far available, we reviewed some of the different ligands and structure-based methods that have recently been used to identify new promising SIRT1/2 modulators. The present review is structured into two sections: the first includes a comprehensive perspective of the successful computational approaches related to the discovery of SIRT1/2 inhibitors (SIRTIs); the second section deals with the most interesting SIRTIs that have recently appeared in the literature (from 2017). The data reported here are collected from different databases (SciFinder, Web of Science, Scopus, Google Scholar, and PubMed) using "SIRT", "sirtuin", and "sirtuin inhibitors" as keywords.

2.
Front Endocrinol (Lausanne) ; 14: 1251351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390373

RESUMEN

Introduction: During thermogenesis, adipose tissue (AT) becomes more active and enhances oxidative metabolism. The promotion of this process in white AT (WAT) is called "browning" and, together with the brown AT (BAT) activation, is considered as a promising approach to counteract obesity and metabolic diseases. Transient receptor potential cation channel, subfamily M, member 2 (TRPM2), is an ion channel that allows extracellular Ca2+ influx into the cytosol, and is gated by adenosine diphosphate ribose (ADPR), produced from NAD+ degradation. The aim of this study was to investigate the relevance of TRPM2 in the regulation of energy metabolism in BAT, WAT, and liver during thermogenesis. Methods: Wild type (WT) and Trpm2-/- mice were exposed to 6°C and BAT, WAT and liver were collected to evaluate mRNA, protein levels and ADPR content. Furthermore, O2 consumption, CO2 production and energy expenditure were measured in these mice upon thermogenic stimulation. Finally, the effect of the pharmacological inhibition of TRPM2 was assessed in primary adipocytes, evaluating the response upon stimulation with the ß-adrenergic receptor agonist CL316,243. Results: Trpm2-/- mice displayed lower expression of browning markers in AT and lower energy expenditure in response to thermogenic stimulus, compared to WT animals. Trpm2 gene overexpression was observed in WAT, BAT and liver upon cold exposure. In addition, ADPR levels and mono/poly-ADPR hydrolases expression were higher in mice exposed to cold, compared to control mice, likely mediating ADPR generation. Discussion: Our data indicate TRPM2 as a fundamental player in BAT activation and WAT browning. TRPM2 agonists may represent new pharmacological strategies to fight obesity.


Asunto(s)
Canales Catiónicos TRPM , Ratones , Animales , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Obesidad/genética , Obesidad/metabolismo , Termogénesis/genética
3.
Med Chem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38333979

RESUMEN

BACKGROUND: During the past two decades, many nicotinamide phosphoribosyltransferase (NAMPT) inhibitors were prepared and tested because this enzyme is overexpressed in pancreatic cancer. Although FK866 is a well-known, strong NAMPT inhibitor, it suffers severe drawbacks. OBJECTIVE: Our work aimed to synthesize efficient NAMPT inhibitors featuring better pharmacokinetic properties than the pyridine-containing FK866. To this aim, the new anticancer agents were based on benzene, pyridazine, or benzothiazole moieties as a cap group instead of the pyridine unit found in FK866 and other NAMPT inhibitors. METHODS: The new compounds, prepared exploiting standard heterocycle chemistry and coupling reactions (e.g., formation of amides, ureas, and cyanoguanidines, copper-mediated azide-alkyne cycloaddition), have been fully characterized using NMR and HRMS analyses. Their activity has been evaluated using cytotoxicity and intracellular NAD depletion assays in the human pancreatic cancer cell line MiaPaCa-2. RESULTS: Among the 14 products obtained, compound 28, bearing a pyridazine unit as the cap group and a thiophene moiety as the tail group, showed 6.7 nanomolar inhibition activity in the intracellular NAD depletion assay and 43 nanomolar inhibition in the MiaPaCa-2 cells cytotoxicity assay, comparable to that observed for FK866. CONCLUSION: The positive results observed for some newly synthesized molecules, particularly those carrying a thiophene unit as a tail group, indicate that they could act as in vivo anti-pancreatic cancer agents.

4.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37765125

RESUMEN

Recently, the development of sirtuin small molecule inhibitors (SIRTIs) has been gaining attention for the treatment of different cancer types, but also to contrast neurodegenerative disease, diabetes, and autoimmune syndromes. In the search for SIRT2 modulators, the availability of several X-crystallographic data regarding SIRT2-ligand complexes has allowed for setting up a structure-based study, which is herein presented. A set of 116 SIRT2 inhibitors featuring different chemical structures has been collected from the literature and used for molecular docking studies involving 4RMG and 5MAT PDB codes. The information found highlights key contacts with the SIRT2 binding pocket such as Van der Waals and π-π stacking with Tyr104, Phe119, Phe234, and Phe235 in order to achieve high inhibitory ability values. Following the preliminary virtual screening studies, a small in-house library of compounds (1a-7a), previously investigated as putative HSP70 inhibitors, was described to guide the search for dual-acting HSP70/SIRT2 inhibitors. Biological and enzymatic assays validated the whole procedure. Compounds 2a and 7a were found to be the most promising derivatives herein proposed.

5.
Biomed Pharmacother ; 166: 115326, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37611438

RESUMEN

Sirtuin 6 (SIRT6) has a critical role in cutaneous Squamous Cell Carcinoma (cSCC): SIRT6 silencing in skin SCC cells has pro-differentiating effects and SIRT6 deletion abrogated DMBA-TPA-induced skin tumorigenesis in mice. On the other hand, SIRT6 acts as tumor suppressor in SCC by enhancing glycolysis in tumor propagating cells. Herein, pharmacological modulation of SIRT6 deacetylase activity was investigated in cSCC, with S6 (inhibitor) or MDL-800 (activator). In cSCC cells, S6 recreated the pro-differentiating effects of SIRT6 silencing, as the levels of Keratin 1, Keratin 10 and Loricrin were upregulated compared to controls. Next, the effects of SIRT6 pharmacological modulation were evaluated in a DMBA-TPA-induced skin cancer mouse model. Mice treated with the inhibitor S6 in a preventive approach, i.e. at the beginning of the promotion stage, presented reduced number and size of papillomas, compared to the controls. The epidermal hyperproliferation marker Keratin 6 and the cSCC marker Keratin 8 were less abundant when SIRT6 was inhibited. In S6-treated lesions, the Epithelial-Mesenchymal Transition (EMT) markers Zeb1 and Vimentin were less expressed compared to untreated lesions. In a therapeutic approach, i.e. treatment starting after papilloma appearance, the S6 group presented reduced papillomas (number and size), whereas MDL-800-treated mice displayed an opposite trend. In S6-treated lesions, Keratin 6 and Keratin 8 were less expressed, EMT was less advanced, with a higher E-cadherin/Vimentin ratio, indicating a delayed carcinogenesis when SIRT6 was inhibited. Our results confirm that SIRT6 plays a role in skin carcinogenesis and suggest SIRT6 pharmacological inhibition as a promising strategy in cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Papiloma , Sirtuinas , Neoplasias Cutáneas , Animales , Ratones , Neoplasias Cutáneas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Queratina-8 , Vimentina , Queratina-6 , Carcinogénesis
6.
Front Oncol ; 13: 1210130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534247

RESUMEN

Background: Malignant melanoma is the most lethal form of skin cancer which shows BRAF mutation in 50% of patients. In this context, the identification of BRAFV600E mutation led to the development of specific inhibitors like PLX4032. Nevertheless, although its initial success, its clinical efficacy is reduced after six-months of therapy leading to cancer relapse due to the onset of drug resistance. Therefore, investigating the mechanisms underlying PLX4032 resistance is fundamental to improve therapy efficacy. In this context, several models of PLX4032 resistance have been developed, but the discrepancy between in vitro and in vivo results often limits their clinical translation. Methods: The herein reported model has been realized by treating with PLX4032, for six months, patient-derived BRAF-mutated melanoma cells in order to obtain a reliable model of acquired PLX4032 resistance that could be predictive of patient's treatment responses. Metabolic analyses were performed by evaluating glucose consumption, ATP synthesis, oxygen consumption rate, P/O ratio, ATP/AMP ratio, lactate release, lactate dehydrogenase activity, NAD+/NADH ratio and pyruvate dehydrogenase activity in parental and drug resistant melanoma cells. The intracellular oxidative state was analyzed in terms of reactive oxygen species production, glutathione levels and NADPH/NADP+ ratio. In addition, a principal component analysis was conducted in order to identify the variables responsible for the acquisition of targeted therapy resistance. Results: Collectively, our results demonstrate, for the first time in patient-derived melanoma cells, that the rewiring of oxidative phosphorylation and the maintenance of pyruvate dehydrogenase activity and of high glutathione levels contribute to trigger the onset of PLX4032 resistance. Conclusion: Therefore, it is possible to hypothesize that inhibitors of glutathione biosynthesis and/or pyruvate dehydrogenase activity could be used in combination with PLX4032 to overcome drug resistance of BRAF-mutated melanoma patients. However, the identification of new adjuvant targets related to drug-induced metabolic reprogramming could be crucial to counteract the failure of targeted therapy in metastatic melanoma.

7.
Biofactors ; 49(6): 1205-1222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409789

RESUMEN

Reduction in oxygen levels is a key feature in the physiology of the bone marrow (BM) niche where hematopoiesis occurs. The BM niche is a highly vascularized tissue and endothelial cells (ECs) support and regulate blood cell formation from hematopoietic stem cells (HSCs). While in vivo studies are limited, ECs when cultured in vitro at low O2 (<5%), fail to support functional HSC maintenance due to oxidative environment. Therefore, changes in EC redox status induced by antioxidant molecules may lead to alterations in the cellular response to hypoxia likely favoring HSC self-renewal. To evaluate the impact of redox regulation, HUVEC, exposed for 1, 6, and 24 h to 3% O2 were treated with N-(N-acetyl-l-cysteinyl)-S-acetylcysteamine (I-152). Metabolomic analyses revealed that I-152 increased glutathione levels and influenced the metabolic profiles interconnected with the glutathione system and the redox couples NAD(P)+/NAD(P)H. mRNA analysis showed a lowered gene expression of HIF-1α and VEGF following I-152 treatment whereas TRX1 and 2 were stimulated. Accordingly, the proteomic study revealed the redox-dependent upregulation of thioredoxin and peroxiredoxins that, together with the glutathione system, are the main regulators of intracellular ROS. Indeed, a time-dependent ROS production under hypoxia and a quenching effect of the molecule were evidenced. At the secretome level, the molecule downregulated IL-6, MCP-1, and PDGF-bb. These results suggest that redox modulation by I-152 reduces oxidative stress and ROS level in hypoxic ECs and may be a strategy to fine-tune the environment of an in vitro BM niche able to support functional HSC maintenance.


Asunto(s)
Células Endoteliales , NAD , Humanos , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , NAD/metabolismo , Proteómica , Oxidación-Reducción , Hipoxia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Glutatión/metabolismo , Oxígeno/metabolismo , Compuestos de Azufre , Compuestos de Sulfhidrilo
8.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298312

RESUMEN

Sirtuin isoform 2 (SIRT2) is one of the seven sirtuin isoforms present in humans, being classified as class III histone deacetylases (HDACs). Based on the high sequence similarity among SIRTs, the identification of isoform selective modulators represents a challenging task, especially for the high conservation observed in the catalytic site. Efforts in rationalizing selectivity based on key residues belonging to the SIRT2 enzyme were accompanied in 2015 by the publication of the first X-ray crystallographic structure of the potent and selective SIRT2 inhibitor SirReal2. The subsequent studies led to different experimental data regarding this protein in complex with further different chemo-types as SIRT2 inhibitors. Herein, we reported preliminary Structure-Based Virtual Screening (SBVS) studies using a commercially available library of compounds to identify novel scaffolds for the design of new SIRT2 inhibitors. Biochemical assays involving five selected compounds allowed us to highlight the most effective chemical features supporting the observed SIRT2 inhibitory ability. This information guided the following in silico evaluation and in vitro testing of further compounds from in-house libraries of pyrazolo-pyrimidine derivatives towards novel SIRT2 inhibitors (1-5). The final results indicated the effectiveness of this scaffold for the design of promising and selective SIRT2 inhibitors, featuring the highest inhibition among the tested compounds, and validating the applied strategy.


Asunto(s)
Sirtuina 2 , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/química , Dominio Catalítico , Bibliotecas de Moléculas Pequeñas , Conformación Proteica , Simulación del Acoplamiento Molecular
9.
Pharmaceutics ; 15(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242714

RESUMEN

The nicotinamide phosphoribosyltransferase (NAMPT) is considered a very promising therapeutic target because it is overexpressed in pancreatic cancer. Although many inhibitors have been prepared and tested, clinical trials have shown that NAMPT inhibition may result in severe haematological toxicity. Therefore, the development of conceptually new inhibitors is an important and challenging task. We synthesized ten ß-d-iminoribofuranosides bearing various heterocycle-based chains carbon-linked to the anomeric position starting from non-carbohydrate derivatives. They were then submitted to NAMPT inhibition assays, as well as to pancreatic tumor cells viability and intracellular NAD+ depletion evaluation. The biological activity of the compounds was compared to that of the corresponding analogues lacking the carbohydrate unit to assess, for the first time, the contribution of the iminosugar moiety to the properties of these potential antitumor agents.

10.
Neoplasia ; 41: 100903, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37148658

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is a key metabolic enzyme in NAD+ synthesis pathways and is found upregulated in several tumors, depicting NAD(H) lowering agents, like the NAMPT inhibitor FK866, as an appealing approach for anticancer therapy. Like other small molecules, FK866 triggers chemoresistance, observed in several cancer cellular models, which can prevent its clinical application. The molecular mechanisms sustaining the acquired of resistance to FK866 were studied in a model of triple negative breast cancer (MDA-MB-231 parental - PAR), exposed to increasing concentrations of the small molecule (MDA-MB-231 resistant - RES). RES cells are not sensitive to verapamil or cyclosporin A, excluding a potential role of increased efflux pumps activity as a mechanism of resistance. Similarly, the silencing of the enzyme Nicotinamide Riboside Kinase 1 (NMRK1) in RES cells does not increase FK866 toxicity, excluding this pathway as a compensatory mechanism of NAD+ production. Instead, Seahorse metabolic analysis revealed an increased mitochondrial spare respiratory capacity in RES cells. These cells presented a higher mitochondrial mass compared to the FK866-sensitive counterparts, as well as an increased consumption of pyruvate and succinate for energy production. Interestingly, co-treatment of PAR cells with FK866 and the mitochondrial pyruvate carrier (MPC) inhibitors UK5099 or rosiglitazone, as well as with the transient silencing of MPC2 but not of MPC1, induces a FK866-resistant phenotype. Taken together, these results unravel novel mechanisms of cell plasticity to counteract FK866 toxicity, that, besides the previously described LDHA dependency, rely on mitochondrial rewiring at functional and energetic levels.


Asunto(s)
NAD , Neoplasias de la Mama Triple Negativas , Humanos , NAD/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral , Fosfotransferasas (Aceptor de Grupo Alcohol)
11.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047732

RESUMEN

Sirtuin 6 (SIRT6) is a member of the mammalian NAD+-dependent deac(et)ylase sirtuin family. SIRT6's anti-inflammatory roles are emerging increasingly often in different diseases and cell types, including endothelial cells. In this study, the role of SIRT6 in pro-inflammatory conditions was investigated by engineering human umbilical vein endothelial cells to overexpress SIRT6 (SIRT6+ HUVECs). Our results showed that SIRT6 overexpression affected the levels of adhesion molecules and sustained megakaryocyte proliferation and proplatelet formation. Interestingly, the pro-inflammatory activation of the ATP/purinergic axis was reduced in SIRT6+ HUVECs. Specifically, the TNFα-induced release of ATP in the extracellular space and the increase in pannexin-1 hemichannel expression, which mediates ATP efflux, were hampered in SIRT6+ cells. Instead, NAD+ release and Connexin43 expression were not modified by SIRT6 levels. Moreover, the Ca2+ influx in response to ATP and the expression of the purinergic receptor P2X7 were decreased in SIRT6+ HUVECs. Contrary to extracellular ATP, extracellular NAD+ did not evoke pro-inflammatory responses in HUVECs. Instead, NAD+ administration reduced endothelial cell proliferation and motility and counteracted the TNFα-induced angiogenesis. Altogether, our data reinforce the view of SIRT6 activation as an anti-inflammatory approach in vascular endothelium.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Sirtuinas , Humanos , Adenosina Trifosfato , Células Endoteliales de la Vena Umbilical Humana/metabolismo , NAD , Sirtuinas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
12.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982232

RESUMEN

Sinusoidal endothelial cells are the predominant vascular surface of the bone marrow and constitute the functional hematopoietic niche where hematopoietic stem and progenitor cells receive cues for self-renewal, survival, and differentiation. In the bone marrow hematopoietic niche, the oxygen tension is usually very low, and this condition affects stem and progenitor cell proliferation and differentiation and other important functions of this region. Here, we have investigated in vitro the response of endothelial cells to a marked decrease in O2 partial pressure to understand how the basal gene expression of some relevant biological factors (i.e., chemokines and interleukins) that are fundamental for the intercellular communication could change in anoxic conditions. Interestingly, mRNA levels of CXCL3, CXCL5, and IL-34 genes are upregulated after anoxia exposure but become downmodulated by sirtuin 6 (SIRT6) overexpression. Indeed, the expression levels of some other genes (such as Leukemia Inhibitory Factor (LIF)) that were not significantly affected by 8 h anoxia exposure become upregulated in the presence of SIRT6. Therefore, SIRT6 mediates also the endothelial cellular response through the modulation of selected genes in an extreme hypoxic condition.


Asunto(s)
Células Madre Hematopoyéticas , Sirtuinas , Células Madre Hematopoyéticas/metabolismo , Células Endoteliales/metabolismo , Células Cultivadas , Médula Ósea/metabolismo , Interleucinas/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
13.
Lab Invest ; 103(3): 100037, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36925196

RESUMEN

Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors. Indeed, in vivo blockade of the eATP/P2X7 purinergic pathway ameliorated muscle disease progression. P2X7 inhibition improved the dystrophic process by restraining the activity of P2X7 receptors on immune cells. Whether P2X7 blockade can display a direct action on muscle cells is not known yet. In this study, we investigated eATP effects in primary cultures of myoblasts isolated from patients with LGMDR3 (α-sarcoglycanopathy) and in immortalized cells isolated from a patient with LGMDR5 (γ-sarcoglycanopathy). Our results demonstrated that, owing to a reduced ecto-ATPase activity and/or an enhanced release of ATP, patient cells are exposed to increased juxtamembrane concentrations of eATP and display a higher susceptivity to eATP signals. The purinoceptor P2Y2, which proved to be overexpressed in patient cells, was identified as a pivotal receptor responsible for the enhanced ATP-induced or UTP-induced Ca2+ increase in affected myoblasts. Moreover, P2Y2 stimulation in LDMDR3 muscle cells induced chemotaxis of immune cells and release of interleukin-8. In conclusion, a higher eATP concentration and sensitivity in primary human muscle cells carrying different α-SG or γ-SG loss-of-function mutations indicate that eATP/P2Y2 is an enhanced signaling axis in cells from patients with α-/γ-sarcoglycanopathy. Understanding the basis of the innate immune-mediated damage associated with the dystrophic process may be critical in overcoming the immunologic hurdles associated with emerging gene therapies for these disorders.


Asunto(s)
Adenosina Trifosfato , Sarcoglicanopatías , Humanos , Adenosina Trifosfato/metabolismo , Músculo Esquelético/metabolismo , Sarcoglicanopatías/metabolismo , Transducción de Señal , Receptores Purinérgicos P2Y2
15.
Antioxidants (Basel) ; 12(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36830052

RESUMEN

Cancer cells fuel growth and energy demands by increasing their NAD+ biosynthesis dependency, which therefore represents an exploitable vulnerability for anti-cancer strategies. CD38 is a NAD+-degrading enzyme that has become crucial for anti-MM therapies since anti-CD38 monoclonal antibodies represent the backbone for treatment of newly diagnosed and relapsed multiple myeloma patients. Nevertheless, further steps are needed to enable a full exploitation of these strategies, including deeper insights of the mechanisms by which CD38 promotes tumorigenesis and its metabolic additions that could be selectively targeted by therapeutic strategies. Here, we present evidence that CD38 upregulation produces a pervasive intracellular-NAD+ depletion, which impairs mitochondrial fitness and enhances oxidative stress; as result, genetic or pharmacologic approaches that aim to modify CD38 surface-level prime MM cells to NAD+-lowering agents. The molecular mechanism underlying this event is an alteration in mitochondrial dynamics, which decreases mitochondria efficiency and triggers energetic remodeling. Overall, we found that CD38 handling represents an innovative strategy to improve the outcomes of NAD+-lowering agents and provides the rationale for testing these very promising agents in clinical studies involving MM patients.

16.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838885

RESUMEN

Targeting cancer cells that are highly dependent on the nicotinamide adenine dinucleotide (NAD+) metabolite is a promising therapeutic strategy. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme catalyzing NAD+ production. Despite the high efficacy of several developed NAMPT inhibitors (i.e., FK866 (APO866)) in preclinical studies, their clinical activity was proven to be limited. Here, we report the synthesis of new NAMPT Inhibitors, JJ08, FEI191 and FEI199, which exhibit a broad anticancer activity in vitro. Results show that these compounds are potent NAMPT inhibitors that deplete NAD+ and NADP(H) after 24 h of drug treatment, followed by an increase in reactive oxygen species (ROS) accumulation. The latter event leads to ATP loss and mitochondrial depolarization with induction of apoptosis and necrosis. Supplementation with exogenous NAD+ precursors or catalase (ROS scavenger) abrogates the cell death induced by the new compounds. Finally, in vivo administration of the new NAMPT inhibitors in a mouse xenograft model of human Burkitt lymphoma delays tumor growth and significantly prolongs mouse survival. The most promising results are collected with JJ08, which completely eradicates tumor growth. Collectively, our findings demonstrate the efficient anticancer activity of the new NAMPT inhibitor JJ08 and highlight a strong interest for further evaluation of this compound in hematological malignancies.


Asunto(s)
Inhibidores Enzimáticos , Neoplasias Hematológicas , Nicotinamida Fosforribosiltransferasa , Animales , Humanos , Ratones , Línea Celular Tumoral , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Neoplasias Hematológicas/tratamiento farmacológico , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Especies Reactivas de Oxígeno
17.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770640

RESUMEN

The maintenance of a proper NAD+ pool is essential for cell survival, and tumor cells are particularly sensitive to changes in coenzyme levels. In this view, the inhibition of NAD+ biosynthesis is considered a promising therapeutic approach. Current research is mostly focused on targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD+ biosynthesis from nicotinamide and nicotinic acid, respectively. In several types of cancer cells, both enzymes are relevant for NAD+ biosynthesis, with NAPRT being responsible for cell resistance to NAMPT inhibition. While potent NAMPT inhibitors have been developed, only a few weak NAPRT inhibitors have been identified so far, essentially due to the lack of an easy and fast screening assay. Here we present a continuous coupled fluorometric assay whereby the product of the NAPRT-catalyzed reaction is enzymatically converted to NADH, and NADH formation is measured fluorometrically. The assay can be adapted to screen compounds that interfere with NADH excitation and emission wavelengths by coupling NADH formation to the cycling reduction of resazurin to resorufin, which is monitored at longer wavelengths. The assay system was validated by confirming the inhibitory effect of some NA-related compounds on purified human recombinant NAPRT. In particular, 2-hydroxynicotinic acid, 2-amminonicotinic acid, 2-fluoronicotinic acid, pyrazine-2-carboxylic acid, and salicylic acid were confirmed as NAPRT inhibitors, with Ki ranging from 149 to 348 µM. Both 2-hydroxynicotinic acid and pyrazine-2-carboxylic acid were found to sensitize OVCAR-5 cells to the NAMPT inhibitor FK866 by decreasing viability and intracellular NAD+ levels.


Asunto(s)
NAD , Niacina , Humanos , NAD/metabolismo , Línea Celular Tumoral , Pentosiltransferasa , Nicotinamida Fosforribosiltransferasa , Citocinas/metabolismo , Niacina/farmacología
18.
Eur J Med Chem ; 250: 115170, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36787658

RESUMEN

Cancer cells are highly dependent on Nicotinamide phosphoribosyltransferase (NAMPT) activity for proliferation, therefore NAMPT represents an interesting target for the development of anti-cancer drugs. Several compounds, such as FK866 and CHS828, were identified as potent NAMPT inhibitors with strong anti-cancer activity, although none of them reached the late stages of clinical trials. We present herein the preparation of three libraries of new inhibitors containing (pyridin-3-yl)triazole, (pyridin-3-yl)thiourea and (pyridin-3/4-yl)cyanoguanidine as cap/connecting unit and a furyl group at the tail position of the compound. Antiproliferative activity in vitro was evaluated on a panel of solid and haematological cancer cell lines and most of the synthesized compounds showed nanomolar or sub-nanomolar cytotoxic activity in MiaPaCa-2 (pancreatic cancer), ML2 (acute myeloid leukemia), JRKT (acute lymphobalistic leukemia), NMLW (Burkitt lymphoma), RPMI8226 (multiple myeloma) and NB4 (acute myeloid leukemia), with lower IC50 values than those reported for FK866. Notably, compounds 35a, 39a and 47 showed cytotoxic activity against ML2 with IC50 = 18, 46 and 49 pM, and IC50 towards MiaPaCa-2 of 0.005, 0.455 and 2.81 nM, respectively. Moreover, their role on the NAD+ synthetic pathway was demonstrated by the NAMPT inhibition assay. Finally, the intracellular NAD+ depletion was confirmed in vitro to induced ROS accumulation that cause a time-dependent mitochondrial membrane depolarization, leading to ATP loss and cell death.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Leucemia , Humanos , Nicotinamida Fosforribosiltransferasa/metabolismo , NAD/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Antineoplásicos/farmacología , Leucemia/metabolismo , Relación Estructura-Actividad , Neoplasias Hematológicas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología
19.
Cells ; 11(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36497069

RESUMEN

Boosting NAD+ levels are considered a promising means to promote healthy aging and ameliorate dysfunctional metabolism. The expression of CD38, the major NAD+-consuming enzyme, is downregulated during thermogenesis in both brown and white adipose tissues (BAT and WAT). Moreover, BAT activation and WAT "browning" were enhanced in Cd38-/- mice. In this study, the role of CD38 in the liver during thermogenesis was investigated, with the liver being the central organ controlling systemic energy metabolism. Wild-type mice and Cd38-/- mice were exposed to cold temperatures, and levels of metabolites and enzymes were measured in the livers and plasma. During cold exposure, CD38 expression was downregulated in the liver, as in BAT and WAT, with a concomitant increase in NAD(H) and a marked decrease in NADPH levels. Glucose-6-phosphate dehydrogenase and the malic enzyme, along with enzymes in the glycolytic pathway, were downregulated, which is in line with glucose-6-P being re-directed towards glucose release. In Cd38-/- mice, the cross-regulation between glycolysis and glucose release was lost, although this did not impair the glucose release from glycogen. Glycerol levels were decreased in the liver from Cd38-/- animals upon cold exposure, suggesting that glyceroneogenesis, as gluconeogenesis, was not properly activated in the absence of CD38. SIRT3 activity, regulating mitochondrial metabolism, was enhanced by cold exposure, whereas its activity was already high at a warm temperature in Cd38-/- mice and was not further increased by the cold. Notably, FGF21 and bile acid release was enhanced in the liver of Cd38-/- mice, which might contribute to enhanced BAT activation in Cd38-/- mice. These results demonstrate that CD38 inhibition can be suggested as a strategy to boost NAD+ and would not negatively affect hepatic functions during thermogenesis.


Asunto(s)
Glucólisis , NAD , Animales , Ratones , NAD/metabolismo , Ratones Endogámicos C57BL , Glucosa/metabolismo , Hígado/metabolismo
20.
Nat Commun ; 13(1): 5415, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109503

RESUMEN

Chronic activation of stress hormones such as glucocorticoids leads to skeletal muscle wasting in mammals. However, the molecular events that mediate glucocorticoid-induced muscle wasting are not well understood. Here, we show that SIRT6, a chromatin-associated deacetylase indirectly regulates glucocorticoid-induced muscle wasting by modulating IGF/PI3K/AKT signaling. Our results show that SIRT6 levels are increased during glucocorticoid-induced reduction of myotube size and during skeletal muscle atrophy in mice. Notably, overexpression of SIRT6 spontaneously decreases the size of primary myotubes in a cell-autonomous manner. On the other hand, SIRT6 depletion increases the diameter of myotubes and protects them against glucocorticoid-induced reduction in myotube size, which is associated with enhanced protein synthesis and repression of atrogenes. In line with this, we find that muscle-specific SIRT6 deficient mice are resistant to glucocorticoid-induced muscle wasting. Mechanistically, we find that SIRT6 deficiency hyperactivates IGF/PI3K/AKT signaling through c-Jun transcription factor-mediated increase in IGF2 expression. The increased activation, in turn, leads to nuclear exclusion and transcriptional repression of the FoxO transcription factor, a key activator of muscle atrophy. Further, we find that pharmacological inhibition of SIRT6 protects against glucocorticoid-induced muscle wasting in mice by regulating IGF/PI3K/AKT signaling implicating the role of SIRT6 in glucocorticoid-induced muscle atrophy.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Sirtuinas , Animales , Cromatina , Glucocorticoides/farmacología , Mamíferos/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/prevención & control , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Somatomedinas/metabolismo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...