Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7213, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531933

RESUMEN

The currently available distribution and range maps for the Great Grey Owl (GGOW; Strix nebulosa) are ambiguous, contradictory, imprecise, outdated, often hand-drawn and thus not quantified, not based on data or scientific. In this study, we present a proof of concept with a biological application for technical and biological workflow progress on latest global open access 'Big Data' sharing, Open-source methods of R and geographic information systems (OGIS and QGIS) assessed with six recent multi-evidence citizen-science sightings of the GGOW. This proposed workflow can be applied for quantified inference for any species-habitat model such as typically applied with species distribution models (SDMs). Using Random Forest-an ensemble-type model of Machine Learning following Leo Breiman's approach of inference from predictions-we present a Super SDM for GGOWs in Alaska running on Oracle Cloud Infrastructure (OCI). These Super SDMs were based on best publicly available data (410 occurrences + 1% new assessment sightings) and over 100 environmental GIS habitat predictors ('Big Data'). The compiled global open access data and the associated workflow overcome for the first time the limitations of traditionally used PC and laptops. It breaks new ground and has real-world implications for conservation and land management for GGOW, for Alaska, and for other species worldwide as a 'new' baseline. As this research field remains dynamic, Super SDMs can have limits, are not the ultimate and final statement on species-habitat associations yet, but they summarize all publicly available data and information on a topic in a quantified and testable fashion allowing fine-tuning and improvements as needed. At minimum, they allow for low-cost rapid assessment and a great leap forward to be more ecological and inclusive of all information at-hand. Using GGOWs, here we aim to correct the perception of this species towards a more inclusive, holistic, and scientifically correct assessment of this urban-adapted owl in the Anthropocene, rather than a mysterious wilderness-inhabiting species (aka 'Phantom of the North'). Such a Super SDM was never created for any bird species before and opens new perspectives for impact assessment policy and global sustainability.

2.
PLoS One ; 10(5): e0119815, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26000734

RESUMEN

We propose a computational method to measure and visualize interrelationships among any number of DNA sequences allowing, for example, the examination of hundreds or thousands of complete mitochondrial genomes. An "image distance" is computed for each pair of graphical representations of DNA sequences, and the distances are visualized as a Molecular Distance Map: Each point on the map represents a DNA sequence, and the spatial proximity between any two points reflects the degree of structural similarity between the corresponding sequences. The graphical representation of DNA sequences utilized, Chaos Game Representation (CGR), is genome- and species-specific and can thus act as a genomic signature. Consequently, Molecular Distance Maps could inform species identification, taxonomic classifications and, to a certain extent, evolutionary history. The image distance employed, Structural Dissimilarity Index (DSSIM), implicitly compares the occurrences of oligomers of length up to k (herein k = 9) in DNA sequences. We computed DSSIM distances for more than 5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional Scaling (MDS) to obtain Molecular Distance Maps that visually display the sequence relatedness in various subsets, at different taxonomic levels. This general-purpose method does not require DNA sequence alignment and can thus be used to compare similar or vastly different DNA sequences, genomic or computer-generated, of the same or different lengths. We illustrate potential uses of this approach by applying it to several taxonomic subsets: phylum Vertebrata, (super)kingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia, and order Primates. This analysis of an extensive dataset confirms that the oligomer composition of full mtDNA sequences can be a source of taxonomic information. This method also correctly finds the mtDNA sequences most closely related to that of the anatomically modern human (the Neanderthal, the Denisovan, and the chimp), and that the sequence most different from it in this dataset belongs to a cucumber.


Asunto(s)
ADN Mitocondrial/genética , Modelos Teóricos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA