Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
J Gen Virol ; 102(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34704922

RESUMEN

Members of the family Herpesviridae have enveloped, spherical virions with characteristic complex structures consisting of symmetrical and non-symmetrical components. The linear, double-stranded DNA genomes of 125-241 kbp contain 70-170 genes, of which 43 have been inherited from an ancestral herpesvirus. In general, herpesviruses have coevolved with and are highly adapted to their hosts, which comprise many mammalian, avian and reptilian species. Following primary infection, they are able to establish lifelong latent infection, during which there is limited viral gene expression. Severe disease is usually observed only in the foetus, the very young, the immunocompromised or following infection of an alternative host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Herpesviridae, which is available at ictv.global/report/herpesviridae.


Asunto(s)
Genoma Viral , Herpesviridae , Animales , Evolución Molecular , Herpesviridae/clasificación , Herpesviridae/genética , Herpesviridae/fisiología , Herpesviridae/ultraestructura , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Adaptación al Huésped , Virión/química , Virión/ultraestructura , Latencia del Virus , Replicación Viral
3.
PLoS Pathog ; 17(8): e1009824, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34398933

RESUMEN

The herpes simplex virus (HSV)-1 protein pUL21 is essential for efficient virus replication and dissemination. While pUL21 has been shown to promote multiple steps of virus assembly and spread, the molecular basis of its function remained unclear. Here we identify that pUL21 is a virus-encoded adaptor of protein phosphatase 1 (PP1). pUL21 directs the dephosphorylation of cellular and virus proteins, including components of the viral nuclear egress complex, and we define a conserved non-canonical linear motif in pUL21 that is essential for PP1 recruitment. In vitro evolution experiments reveal that pUL21 antagonises the activity of the virus-encoded kinase pUS3, with growth and spread of pUL21 PP1-binding mutant viruses being restored in adapted strains where pUS3 activity is disrupted. This study shows that virus-directed phosphatase activity is essential for efficient herpesvirus assembly and spread, highlighting the fine balance between kinase and phosphatase activity required for optimal virus replication.


Asunto(s)
Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Replicación Viral , Animales , Chlorocebus aethiops , Células HEK293 , Herpesvirus Humano 1/enzimología , Humanos , Monoéster Fosfórico Hidrolasas/genética , Células Vero , Proteínas Virales/genética , Liberación del Virus
4.
Vaccine ; 38(2): 388-398, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31629571

RESUMEN

Equid herpesvirus-1 (EHV-1) causes respiratory and neurological disease and late gestation abortion in pregnant mares. Current vaccines contain either inactivated or live EHV-1, but fail to provide complete clinical or virological protection, namely prevention of nasopharyngeal shedding and cell-associated viraemia. Thus, the development of novel products, such as modified live virus (MLV) vaccines which stimulate virus-specific, humoral and cell mediated immune responses more effectively remains a priority. Two groups of weaned foals (n = 6 each group) were used in a longitudinal, prospective, experimental study to evaluate immune responses elicited by two vaccinations with a glycoprotein M (gM) deletion mutant of EHV-1 (RacHdeltagM). Following two concurrent intranasal and intramuscular inoculations six weeks apart, vaccinated (8.4 ±â€¯0.2 months old) and control foals (6.2 ±â€¯0.4 months) were challenge infected intranasally with EHV-1 Ab4/8 four weeks after the second vaccination and clinical signs and virological replication measured. Vaccination caused no adverse events, but did stimulate significantly higher complement fixing and virus neutralizing antibodies in serum compared with control foals at either equivalent or pre-vaccination time points. Virus-specific nasopharyngeal antibody levels and cytotoxic T lymphocyte responses were not significantly different between the groups. Following challenge infection, these immune responses were associated with a reduction in clinical signs and virological replication in the vaccinated foals, including a reduction in duration and magnitude of pyrexia, nasopharyngeal shedding and cell-associated viraemia. We conclude that the RacHΔgM MLV primed EHV-1-specific humoral immune responses in weaned foals. However, complete virological protection by vaccination against EHV-1 requires further research.


Asunto(s)
Infecciones por Herpesviridae/prevención & control , Herpesvirus Équido 1/inmunología , Enfermedades de los Caballos/prevención & control , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Femenino , Eliminación de Gen , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Inmunidad Humoral , Estudios Longitudinales , Masculino , Nasofaringe/virología , Estudios Prospectivos , Vacunas Virales/inmunología , Replicación Viral/inmunología , Esparcimiento de Virus
5.
Sci Adv ; 4(4): eaaq0392, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29740610

RESUMEN

Donkeys and horses share a common ancestor dating back to about 4 million years ago. Although a high-quality genome assembly at the chromosomal level is available for the horse, current assemblies available for the donkey are limited to moderately sized scaffolds. The absence of a better-quality assembly for the donkey has hampered studies involving the characterization of patterns of genetic variation at the genome-wide scale. These range from the application of genomic tools to selective breeding and conservation to the more fundamental characterization of the genomic loci underlying speciation and domestication. We present a new high-quality donkey genome assembly obtained using the Chicago HiRise assembly technology, providing scaffolds of subchromosomal size. We make use of this new assembly to obtain more accurate measures of heterozygosity for equine species other than the horse, both genome-wide and locally, and to detect runs of homozygosity potentially pertaining to positive selection in domestic donkeys. Finally, this new assembly allowed us to identify fine-scale chromosomal rearrangements between the horse and the donkey that likely played an active role in their divergence and, ultimately, speciation.


Asunto(s)
Animales Domésticos , Equidae/genética , Genoma , Genómica , Animales , Biología Computacional/métodos , ADN Mitocondrial , Equidae/clasificación , Variación Genética , Genómica/métodos , Heterocigoto , Homocigoto , Anotación de Secuencia Molecular
6.
Pathogens ; 6(1)2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28208721

RESUMEN

Equine influenza viruses (EIV) are a major cause of acute respiratory disease in horses worldwide and occasionally also affect vaccinated animals. Like other influenza A viruses, they undergo antigenic drift, highlighting the importance of both surveillance and virus characterisation in order for vaccine strains to be kept up to date. The aim of the work reported here was to monitor the genetic and antigenic changes occurring in EIV circulating in the UK from 2013 to 2015 and to identify any evidence of vaccine breakdown in the field. Virus isolation, reverse transcription polymerase chain reaction (RT-PCR) and sequencing were performed on EIV-positive nasopharyngeal swab samples submitted to the Diagnostic Laboratory Services at the Animal Health Trust (AHT). Phylogenetic analyses were completed for the haemagglutinin-1 (HA1) and neuraminidase (NA) genes using PhyML and amino acid sequences compared against the current World Organisation for Animal Health (OIE)-recommended Florida clade 2 vaccine strain. Substitutions between the new isolates and the vaccine strain were mapped onto the three-dimensional structure protein structures using PyMol. Antigenic analyses were carried out by haemagglutination inhibition assay using a panel of post-infection ferret antisera. Sixty-nine outbreaks of equine influenza in the UK were reported by the AHT between January 2013 and December 2015. Forty-seven viruses were successfully isolated in eggs from 41 of the outbreaks. Only three cases of vaccine breakdown were identified and in each case the vaccine used contained a virus antigen not currently recommended for equine influenza vaccines. Nucleotide sequencing of the HA and NA genes revealed that all of the viruses belonged to the Florida clade 2 sub-lineage of H3N8 EIV. Phylogenetic and sequence analyses showed that the two sub-populations, previously identified within clade 2, continued to circulate and had accrued further amino acid substitutions. Antigenic characterisation using post-infection ferret antisera in haemagglutination inhibition assays however, failed to detect any marked antigenic differences between the isolates. These findings show that Florida clade 2 EIV continue to circulate in the UK and support the current OIE recommendation to include an example of Florida clade 2 in vaccines.

7.
Virology ; 481: 187-98, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25797606

RESUMEN

Equine influenza is a major cause of respiratory infections in horses and causes widespread epidemics, despite the availability of commercial vaccines. Antigenic drift within the haemagglutinin (HA) glycoprotein is thought to play a part in vaccination breakdown. Here, we carried out a detailed investigation of the 1989 UK outbreak, using reverse genetics and site-directed mutagenesis, to determine the individual contribution of amino acid substitutions within HA. Mutations at positions 159, 189 and 227 all altered antigenicity, as measured by haemagglutination-inhibition assays. We also compared HA sequences for epidemic and vaccine strains from four epidemics and found that at least 8 amino acid differences were present, affecting multiple antigenic sites. Substitutions within antigenic site B and at least one other were associated with each outbreak, we also identified changes in loop regions close to antigenic sites that have not previously been highlighted for human H3 influenza viruses.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Enfermedades de los Caballos/virología , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Secuencia de Aminoácidos , Animales , Variación Antigénica , Mapeo Epitopo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Enfermedades de los Caballos/epidemiología , Caballos , Virus de la Influenza A/química , Virus de la Influenza A/clasificación , Virus de la Influenza A/inmunología , Modelos Moleculares , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Alineación de Secuencia , Reino Unido/epidemiología
8.
Virol J ; 11: 159, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25183201

RESUMEN

BACKGROUND: H3N8 equine influenza virus (EIV) has caused disease outbreaks in horses across the world since its first isolation in 1963. However, unlike human, swine and avian influenza, there is relatively little sequence data available for this virus. The majority of published sequences are for the segment encoding haemagglutinin (HA), one of the two surface glycoproteins, making it difficult to study the evolution of the other gene segments and determine the level of reassortment occurring between sub-lineages. METHODS: To facilitate the generation of full genome sequences for EIV, we developed a simple, cost-effective and efficient method. M13-tagged primers were used to amplify short, overlapping RT-PCR products, which were then sequenced using Sanger dideoxynucleotide sequencing technology. We also modified a previously published method, developed for human H3N2 and avian H5N1 influenza viruses, which was based on the ligation of viral RNA and subsequent amplification by RT-PCR, to sequence the non-coding termini (NCRs). This necessitated the design of novel primers for an N8 neuraminidase segment. RESULTS: Two field isolates were sequenced successfully, A/equine/Lincolnshire/1/07 and A/equine/Richmond/1/07, representative of the Florida sublineage clades 1 and 2 respectively. A total of 26 PCR products varying in length from 400-600 nucleotides allowed full coverage of the coding sequences of the eight segments, with sufficient overlap to allow sequence assembly with no primer-derived sequences. Sequences were also determined for the non-coding regions and revealed cytosine at nucleotide 4 in the polymerase segments. Analysis of EIV genomes sequenced using these methods revealed a novel polymorphism in the PA-X protein in some isolates. CONCLUSIONS: These methods can be used to determine the genome sequences of EIV, including the NCRs, from both clade 1 and clade 2 of the Florida sublineage. Full genomes were covered efficiently using fewer PCR products than previously reported methods for influenza A viruses, the techniques used are affordable and the equipment required is available in most research laboratories. The adoption of these methods will hopefully allow for an increase in the number of full genomes available for EIV, leading to improved surveillance and a better understanding of EIV evolution.


Asunto(s)
Genoma Viral , Enfermedades de los Caballos/virología , Subtipo H3N8 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Polimorfismo Genético , Animales , ADN Complementario , Caballos , Infecciones por Orthomyxoviridae/virología , Reacción en Cadena de la Polimerasa , ARN no Traducido/genética , ARN Viral
9.
Virology ; 462-463: 218-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24999046

RESUMEN

Ectromelia virus (ECTV) is the causative agent of mousepox, a disease of laboratory mouse colonies and an excellent model for human smallpox. We report the genome sequence of two isolates from outbreaks in laboratory mouse colonies in the USA in 1995 and 1999: ECTV-Naval and ECTV-Cornell, respectively. The genome of ECTV-Naval and ECTV-Cornell was sequenced by the 454-Roche technology. The ECTV-Naval genome was also sequenced by the Sanger and Illumina technologies in order to evaluate these technologies for poxvirus genome sequencing. Genomic comparisons revealed that ECTV-Naval and ECTV-Cornell correspond to the same virus isolated from independent outbreaks. Both ECTV-Naval and ECTV-Cornell are extremely virulent in susceptible BALB/c mice, similar to ECTV-Moscow. This is consistent with the ECTV-Naval genome sharing 98.2% DNA sequence identity with that of ECTV-Moscow, and indicates that the genetic differences with ECTV-Moscow do not affect the virulence of ECTV-Naval in the mousepox model of footpad infection.


Asunto(s)
ADN Viral/química , ADN Viral/genética , Brotes de Enfermedades , Virus de la Ectromelia/genética , Ectromelia Infecciosa/epidemiología , Ectromelia Infecciosa/virología , Genoma Viral , Animales , Virus de la Ectromelia/aislamiento & purificación , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Estados Unidos/epidemiología
10.
Vet Microbiol ; 169(3-4): 113-27, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24480583

RESUMEN

Equine influenza viruses are a major cause of respiratory disease in horses worldwide and undergo antigenic drift. Several outbreaks of equine influenza occurred worldwide during 2010-2012, including in vaccinated animals, highlighting the importance of surveillance and virus characterisation. Virus isolates were characterised from more than 20 outbreaks over a 3-year period, including strains from the UK, Dubai, Germany and the USA. The haemagglutinin-1 (HA1) sequence of all isolates was determined and compared with OIE-recommended vaccine strains. Viruses from Florida clades 1 and 2 showed continued divergence from each other compared with 2009 isolates. The antigenic inter-relationships among viruses were determined using a haemagglutination-inhibition (HI) assay with ferret antisera and visualised using antigenic cartography. All European isolates belonged to Florida clade 2, all those from the USA belonged to Florida clade 1. Two subpopulations of clade 2 viruses were isolated, with either substitution A144V or I179V. Isolates from Dubai, obtained from horses shipped from Uruguay, belonged to Florida clade 1 and were similar to viruses isolated in the USA the previous year. The neuraminidase (NA) sequence of representative strains from 2007 and 2009 to 2012 was also determined and compared with that of earlier isolates dating back to 1963. Multiple changes were observed at the amino acid level and clear distinctions could be made between viruses belonging to Florida clade 1 and clade 2.


Asunto(s)
Enfermedades de los Caballos/virología , Subtipo H3N8 del Virus de la Influenza A/clasificación , Subtipo H3N8 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Secuencia de Aminoácidos , Animales , Europa (Continente) , Hemaglutininas Virales/genética , Enfermedades de los Caballos/epidemiología , Caballos , Modelos Moleculares , Datos de Secuencia Molecular , Neuraminidasa/química , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/virología , Filogenia , Vigilancia de la Población , Estructura Terciaria de Proteína , Alineación de Secuencia , Emiratos Árabes Unidos , Estados Unidos
11.
Influenza Other Respir Viruses ; 7 Suppl 4: 81-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24224823

RESUMEN

BACKGROUND: Many human strains of influenza A virus produce highly pleomorphic virus particles that at the extremes can be approximated as either spheres of around 100 nm diameter or filaments of similar cross-section but elongated to lengths of many microns. The role filamentous virions play in the virus life cycle remains enigmatic. OBJECTIVES/METHODS: Here, we set out to define the morphology and genetics of virus particle shape in equine influenza A virus, using reverse genetics and microscopy of infected cells. RESULTS AND CONCLUSIONS: The majority of H3N8 strains tested were found to produce filamentous virions, as did the prototype H7N7 A/eq/Prague/56 strain. The exception was the prototype H3N8 isolate, A/eq/Miami/63. Reassortment of equine influenza virus M genes from filamentous and non-filamentous strains into the non-filamentous human virus A/PR/8/34 confirmed that segment 7 is a major determinant of particle shape. Sequence analysis identified three M1 amino acid polymorphisms plausibly associated with determining virion morphology, and the introduction of these changes into viruses confirmed the importance of two: S85N and N231D. However, while either change alone affected filament production, the greatest effect was seen when the polymorphisms were introduced in conjunction. Thus, influenza A viruses from equine hosts also produce filamentous virions, and the major genetic determinants are set by the M1 protein. However, the precise sequence determinants are different to those previously identified in human or porcine viruses.


Asunto(s)
Enfermedades de los Caballos/virología , Subtipo H3N8 del Virus de la Influenza A/genética , Subtipo H7N7 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Secuencia de Aminoácidos , Animales , Caballos , Subtipo H3N8 del Virus de la Influenza A/química , Subtipo H3N8 del Virus de la Influenza A/clasificación , Subtipo H3N8 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N7 del Virus de la Influenza A/química , Subtipo H7N7 del Virus de la Influenza A/clasificación , Subtipo H7N7 del Virus de la Influenza A/aislamiento & purificación , Microscopía Confocal , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/virología , Genética Inversa , Alineación de Secuencia , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética
12.
Vet Microbiol ; 147(1-2): 19-27, 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-20580170

RESUMEN

Like other influenza A viruses, equine influenza virus undergoes antigenic drift. It is therefore essential that surveillance is carried out to ensure that recommended strains for inclusion in vaccines are kept up to date. Here we report antigenic and genetic characterisation carried out on equine influenza virus strains isolated in North America and Europe over a 2-year period from 2008 to 2009. Nasopharyngeal swabs were taken from equines showing acute clinical signs and submitted to diagnostic laboratories for testing and virus isolation in eggs. The sequence of the HA1 portion of the viral haemagglutinin was determined for each strain. Where possible, sequence was determined directly from swab material as well as from virus isolated in eggs. In Europe, 20 viruses were isolated from 15 sporadic outbreaks and 5 viruses were isolated from North America. All of the European and North American viruses were characterised as members of the Florida sublineage, with similarity to A/eq/Lincolnshire/1/07 (clade 1) or A/eq/Richmond/1/07 (clade 2). Antigenic characterisation by haemagglutination inhibition assay indicated that the two clades could be readily distinguished and there were also at least seven amino acid differences between them. The selection of vaccine strains for 2010 by the expert surveillance panel have taken these differences into account and it is now recommended that representatives of both Florida clade 1 and clade 2 are included in vaccines.


Asunto(s)
Enfermedades de los Caballos/virología , Subtipo H3N8 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Secuencia de Aminoácidos , Animales , Antígenos Virales/análisis , Europa (Continente) , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Caballos , Subtipo H3N8 del Virus de la Influenza A/clasificación , Subtipo H3N8 del Virus de la Influenza A/aislamiento & purificación , Datos de Secuencia Molecular , América del Norte , Infecciones por Orthomyxoviridae/virología , Filogenia , Alineación de Secuencia , Homología de Secuencia de Aminoácido
13.
Vet Res ; 41(2): 19, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19863903

RESUMEN

During 2007, large outbreaks of equine influenza (EI) caused by Florida sublineage Clade 1 viruses affected horse populations in Japan and Australia. The likely protection that would be provided by two modern vaccines commercially available in the European Union (an ISCOM-based and a canarypox-based vaccine) at the time of the outbreaks was determined. Vaccinated ponies were challenged with a representative outbreak isolate (A/eq/Sydney/2888-8/07) and levels of protection were compared.A group of ponies infected 18 months previously with a phylogenetically-related isolate from 2003 (A/eq/South Africa/4/03) was also challenged with the 2007 outbreak virus. After experimental infection with A/eq/Sydney/2888-8/07, unvaccinated control ponies all showed clinical signs of infection together with virus shedding. Protection achieved by both vaccination or long-term immunity induced by previous exposure to equine influenza virus (EIV) was characterised by minor signs of disease and reduced virus shedding when compared with unvaccinated control ponies. The three different methods of virus titration in embryonated hens' eggs, EIV NP-ELISA and quantitative RT-PCR were used to monitor EIV shedding and results were compared. Though the majority of previously infected ponies had low antibody levels at the time of challenge, they demonstrated good clinical protection and limited virus shedding. In summary, we demonstrate that vaccination with current EIV vaccines would partially protect against infection with A/eq/Sydney/2888-8/07-like strains and would help to limit the spread of disease in our vaccinated horse population.


Asunto(s)
Brotes de Enfermedades/veterinaria , Enfermedades de los Caballos/prevención & control , Subtipo H3N8 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Animales , Anticuerpos Antivirales/sangre , Australia/epidemiología , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Esparcimiento de Virus
14.
Vet Microbiol ; 138(1-2): 41-52, 2009 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-19346084

RESUMEN

Equine influenza virus (EIV) surveillance is important in the management of equine influenza. It provides data on circulating and newly emerging strains for vaccine strain selection. To this end, antigenic characterisation by haemaggluttination inhibition (HI) assay and phylogenetic analysis was carried out on 28 EIV strains isolated in North America and Europe during 2006 and 2007. In the UK, 20 viruses were isolated from 28 nasopharyngeal swabs that tested positive by enzyme-linked immunosorbent assay. All except two of the UK viruses were characterised as members of the Florida sublineage with similarity to A/eq/Newmarket/5/03 (clade 2). One isolate, A/eq/Cheshire/1/06, was characterised as an American lineage strain similar to viruses isolated up to 10 years earlier. A second isolate, A/eq/Lincolnshire/1/07 was characterised as a member of the Florida sublineage (clade 1) with similarity to A/eq/Wisconsin/03. Furthermore, A/eq/Lincolnshire/1/06 was a member of the Florida sublineage (clade 2) by haemagglutinin (HA) gene sequence, but appeared to be a member of the Eurasian lineage by the non-structural gene (NS) sequence suggesting that reassortment had occurred. A/eq/Switzerland/P112/07 was characterised as a member of the Eurasian lineage, the first time since 2005 that isolation of a virus from this lineage has been reported. Seven viruses from North America were classified as members of the Florida sublineage (clade 1), similar to A/eq/Wisconsin/03. In conclusion, a variety of antigenically distinct EIVs continue to circulate worldwide. Florida sublineage clade 1 viruses appear to predominate in North America, clade 2 viruses in Europe.


Asunto(s)
Variación Genética , Enfermedades de los Caballos/virología , Subtipo H3N8 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Pollos/virología , Ensayo de Inmunoadsorción Enzimática , Eritrocitos/virología , Europa (Continente) , Genes Virales , Caballos , Subtipo H3N8 del Virus de la Influenza A/clasificación , Subtipo H3N8 del Virus de la Influenza A/aislamiento & purificación , Enfermedades Pulmonares/veterinaria , Enfermedades Pulmonares/virología , Nasofaringe/virología , América del Norte , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Proteínas no Estructurales Virales/genética
19.
EMBO J ; 22(4): 833-46, 2003 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-12574120

RESUMEN

Mimicry of host chemokines and chemokine receptors to modulate chemokine activity is a strategy encoded by beta- and gammaherpesviruses, but very limited information is available on the anti-chemokine strategies encoded by alphaherpesviruses. The secretion of chemokine binding proteins (vCKBPs) has hitherto been considered a unique strategy encoded by poxviruses and gammaherpesviruses. We describe a family of novel vCKBPs in equine herpesvirus 1, bovine herpesvirus 1 and 5, and related alphaherpesviruses with no sequence similarity to chemokine receptors or other vCKBPs. We show that glycoprotein G (gG) is secreted from infected cells, binds a broad range of chemokines with high affinity and blocks chemokine activity by preventing their interaction with specific receptors. Moreover, gG also blocks chemokine binding to glycosaminoglycans, an interaction required for the correct presentation and function of chemokines in vivo. In contrast to other vCKBPs, gG may also be membrane anchored and, consistently, we show chemokine binding activity at the surface of cells expressing full-length protein. These alphaherpesvirus vCKBPs represent a novel family of proteins that bind chemokines both at the membrane and in solution.


Asunto(s)
Alphaherpesvirinae/metabolismo , Citocinas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Heparina/metabolismo , Herpesvirus Bovino 1/metabolismo , Herpesvirus Équido 1/metabolismo , Herpesvirus Bovino 5/metabolismo , Caballos , Humanos , Datos de Secuencia Molecular , Unión Proteica/fisiología , Isoformas de Proteínas/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA