Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(11): 335, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882878

RESUMEN

Muscleblind-like splicing regulators (MBNLs) activate or repress the inclusion of alternative splicing (AS) events, enabling the developmental transition of fetal mRNA splicing isoforms to their adult forms. Herein, we sought to elaborate the mechanism by which MBNLs mediate AS related to biological processes. We evaluated the functional role of DEAD-box (DDX) RNA helicases, DDX5 and DDX17 in MBNL-dependent AS regulation. Whole-transcriptome analysis and validation approaches revealed a handful of MBNLs-dependent AS events to be affected by DDX5 and DDX17 in mostly an opposite manner. The opposite expression patterns of these two groups of factors during muscle development and coordination of fetal-to-adult splicing transition indicate the importance of these proteins at early stages of development. The identified pathways of how the helicases modulate MBNL splicing activity include DDX5 and DDX17-dependent changes in the ratio of MBNL splicing isoforms and most likely changes in accessibility of MBNL-binding sites. Another pathway involves the mode of action of the helicases independent of MBNL activity. These findings lead to a deeper understanding of the network of interdependencies between RNA-binding proteins and constitute a valuable element in the discussion on developmental homeostasis and pathological states in which the studied protein factors play a significant role.


Asunto(s)
Empalme Alternativo , ARN Helicasas , Empalme Alternativo/genética , ARN Helicasas/genética , Empalme del ARN , Isoformas de Proteínas/genética , Sitios de Unión/genética
2.
BMC Mol Biol ; 19(1): 9, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053800

RESUMEN

BACKGROUND: Core canonical histones are required in the S phase of the cell cycle to pack newly synthetized DNA, therefore the expression of their genes is highly activated during DNA replication. In mammalian cells, this increment is achieved by both enhanced transcription and 3' end processing. In this paper, we described positive cofactor 4 (PC4) as a protein that contributes to the regulation of replication-dependent histone gene expression. RESULTS: We showed that PC4 influences RNA polymerase II recruitment to histone gene loci in a cell cycle-dependent manner. The most important effect was observed in S phase where PC4 knockdown leads to the elevated level of RNA polymerase II on histone genes, which corresponds to the increased total level of those gene transcripts. The opposite effect was caused by PC4 overexpression. Moreover, we found that PC4 has a negative effect on the unique 3' end processing of histone pre-mRNAs that can be based on the interaction of PC4 with U7 snRNP and CstF64. Interestingly, this effect does not depend on the cell cycle. CONCLUSIONS: We conclude that PC4 might repress RNA polymerase II recruitment and transcription of replication-dependent histone genes in order to maintain the very delicate balance between histone gene expression and DNA synthesis. It guards the cell from excess of histones in S phase. Moreover, PC4 might promote the interaction of cleavage and polyadenylation complex with histone pre-mRNAs, that might impede with the recruitment of histone cleavage complex. This in turn decreases the 3' end processing efficiency of histone gene transcripts.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Histonas/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Ciclo Celular , Factor de Estimulación del Desdoblamiento/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Procesamiento de Término de ARN 3' , Ribonucleoproteína Nuclear Pequeña U7/metabolismo
3.
Nucleic Acids Res ; 43(20): 9711-28, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26250115

RESUMEN

Replication-dependent histone genes are up-regulated during the G1/S phase transition to meet the requirement for histones to package the newly synthesized DNA. In mammalian cells, this increment is achieved by enhanced transcription and 3' end processing. The non-polyadenylated histone mRNA 3' ends are generated by a unique mechanism involving the U7 small ribonucleoprotein (U7 snRNP). By using affinity purification methods to enrich U7 snRNA, we identified FUS/TLS as a novel U7 snRNP interacting protein. Both U7 snRNA and histone transcripts can be precipitated by FUS antibodies predominantly in the S phase of the cell cycle. Moreover, FUS depletion leads to decreased levels of correctly processed histone mRNAs and increased levels of extended transcripts. Interestingly, FUS antibodies also co-immunoprecipitate histone transcriptional activator NPAT and transcriptional repressor hnRNP UL1 in different phases of the cell cycle. We further show that FUS binds to histone genes in S phase, promotes the recruitment of RNA polymerase II and is important for the activity of histone gene promoters. Thus, FUS may serve as a linking factor that positively regulates histone gene transcription and 3' end processing by interacting with the U7 snRNP and other factors involved in replication-dependent histone gene expression.


Asunto(s)
Replicación del ADN , Regulación de la Expresión Génica , Histonas/genética , Proteína FUS de Unión a ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U7/metabolismo , Transcripción Genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Histonas/biosíntesis , Humanos , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , ARN Nuclear Pequeño/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...