Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Phys Rev Lett ; 132(21): 213602, 2024 May 24.
Article En | MEDLINE | ID: mdl-38856267

The approach of shortcuts to adiabaticity enables the effective execution of adiabatic dynamics in quantum information processing with enhanced speed. Owing to the inherent trade-off between dynamical speed and the cost associated with the transitionless driving field, executing arbitrarily fast operations becomes impractical. To understand the accurate interplay between speed and energetic cost in this process, we propose theoretically and verify experimentally a new trade-off, which is characterized by a tightly optimized bound within s-parametrized phase spaces. Our experiment is carried out in a single ultracold ^{40}Ca^{+} ion trapped in a harmonic potential. By exactly operating the quantum states of the ion, we execute the Landau-Zener model as an example, where the quantum speed limit as well as the cost are governed by the spectral gap. We witness that our proposed trade-off is indeed tight in scenarios involving both initially eigenstates and initially thermal equilibrium states. Our work helps understanding the fundamental constraints in shortcuts to adiabaticity and illuminates the potential of underutilized phase spaces that have been traditionally overlooked.

2.
Phys Rev Lett ; 132(18): 180401, 2024 May 03.
Article En | MEDLINE | ID: mdl-38759168

Although entanglement is considered as an essential resource for quantum information processing, whether entanglement helps for energy conversion or output in the quantum regime is still lack of experimental witness. Here, we report on an energy-conversion device operating as a quantum engine with the working medium acted by two entangled ions confined in a harmonic potential. The two ions are entangled by virtually coupling to one of the vibrational modes shared by the two ions, and the quantum engine couples to a quantum load, which is another shared vibrational mode. We explore the energy conversion efficiency of the quantum engine and investigate the useful energy (i.e., the maximum extractable work) stored in the quantum load by tuning the two ions in different degrees of entanglement as well as detecting the change of the phonons in the load. Our observation provides, for the first time, quantitative evidence that entanglement fuels the useful energy produced by the quantum engine, but not helpful for the energy conversion efficiency. We consider that our results may be useful to the study of quantum batteries for which one of the most indexes is the maximum extractable energy.

3.
Phys Rev Lett ; 130(11): 110402, 2023 Mar 17.
Article En | MEDLINE | ID: mdl-37001093

Quantum heat engines are expected to outperform the classical counterparts due to quantum coherences involved. Here we experimentally execute a single-ion quantum heat engine and demonstrate, for the first time, the dynamics and the enhanced performance of the heat engine originating from the Liouvillian exceptional points (LEPs). In addition to the topological effects related to LEPs, we focus on thermodynamic effects, which can be understood by the Landau-Zener-Stückelberg process under decoherence. We witness a positive net work from the quantum heat engine if the heat engine cycle dynamically encircles a LEP. Further investigation reveals that a larger net work is done when the system is operated closer to the LEP. We attribute the enhanced performance of the quantum heat engine to the Landau-Zener-Stückelberg process, enabled by the eigenenergy landscape in the vicinity of the LEP, and the exceptional point-induced topological transition. Therefore, our results open new possibilities toward LEP-enabled control of quantum heat engines and of thermodynamic processes in open quantum systems.

4.
Nat Commun ; 13(1): 6225, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-36266331

A quantum thermal machine is an open quantum system coupled to hot and cold thermal baths. Thus, its dynamics can be well understood using the concepts and tools from non-Hermitian quantum systems. A hallmark of non-Hermiticity is the existence of exceptional points where the eigenvalues of a non-Hermitian Hamiltonian or a Liouvillian superoperator and their associated eigenvectors coalesce. Here, we report the experimental realization of a single-ion heat engine and demonstrate the effect of Liouvillian exceptional points on the dynamics and the performance of a quantum heat engine. Our experiments have revealed that operating the engine in the exact- and broken-phases, separated by a Liouvillian exceptional point, respectively during the isochoric heating and cooling strokes of an Otto cycle produces more work and output power and achieves higher efficiency than executing the Otto cycle completely in the exact phase where the system has an oscillatory dynamics and higher coherence. This result opens interesting possibilities for the control of quantum heat engines and will be of interest to other research areas that are concerned with the role of coherence and exceptional points in quantum processes and in work extraction by thermal machines.

5.
Phys Rev Lett ; 128(5): 050603, 2022 Feb 04.
Article En | MEDLINE | ID: mdl-35179926

Dissipation is vital to any cyclic process in realistic systems. Recent research focus on nonequilibrium processes in stochastic systems has revealed a fundamental trade-off, called dissipation-time uncertainty relation, that entropy production rate associated with dissipation bounds the evolution pace of physical processes [Phys. Rev. Lett. 125, 120604 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.120604]. Following the dissipative two-level model exemplified in the same Letter, we experimentally verify this fundamental trade-off in a single trapped ultracold ^{40}Ca^{+} ion using elaborately designed dissipative channels, along with a postprocessing method developed in the data analysis, to build the effective nonequilibrium stochastic evolutions for the energy transfer between two heat baths mediated by a qubit. Since the dissipation-time uncertainty relation imposes a constraint on the quantum speed regarding entropy flux, our observation provides the first experimental evidence confirming such a speed restriction from thermodynamics on quantum operations due to dissipation, which helps us further understand the role of thermodynamical characteristics played in quantum information processing.

6.
Phys Rev Lett ; 127(3): 030502, 2021 Jul 16.
Article En | MEDLINE | ID: mdl-34328774

Quantum gates induced by geometric phases are intrinsically robust against noise due to the global properties of their evolution paths. Compared to conventional nonadiabatic geometric quantum computation, the recently proposed nonadiabatic noncyclic geometric quantum computation (NNGQC) works in a faster fashion while still remaining the robust feature of the geometric operations. Here, we experimentally implement the NNGQC in a single trapped ultracold ^{40}Ca^{+} ion to verify the noise-resilient and fast feature. By performing unitary operations under imperfect conditions, we witness the advantages of the NNGQC with measured fidelities by quantum process tomography in comparison to other two quantum gates by conventional nonadiabatic geometric quantum computation and by straightforward dynamical evolution. Our results provide the first evidence confirming the possibility of accelerated quantum information processing with limited systematic errors even in an imperfect situation.

...