Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Toxics ; 12(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787088

RESUMEN

Effluent discharged from urban wastewater treatment plants (WWTPs) is a major source of emerging contaminants (ECs) requiring effective regulation. To this end, we collected discharge datasets of pharmaceuticals (PHACs) and endocrine-disrupting chemicals (EDCs), representing two primary categories of ECs, from Chinese WWTP effluent from 2012 to 2022 to establish an exposure database. Moreover, high-risk ECs' long-term water quality criteria (LWQC) were derived using the species sensitivity distribution (SSD) method. A total of 140 ECs (124 PHACs and 16 EDCs) were identified, with concentrations ranging from N.D. (not detected) to 706 µg/L. Most data were concentrated in coastal regions and Gansu, with high ecological risk observed in Gansu, Hebei, Shandong, Guangdong, and Hong Kong. Using the assessment factor (AF) method, 18 high-risk ECs requiring regulation were identified. However, only three of them, namely carbamazepine, ibuprofen, and bisphenol-A, met the derivation requirements of the SSD method. The LWQC for these three ECs were determined as 96.4, 1010, and 288 ng/L, respectively. Exposure data for carbamazepine and bisphenol-A surpassed their derived LWQC, indicating a need for heightened attention to these contaminants. This study elucidates the occurrence and risks of ECs in Chinese WWTPs and provides theoretical and data foundations for EC management in urban sewage facilities.

2.
Sci Total Environ ; 926: 172067, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38565352

RESUMEN

Diffusive gradients in thin films (DGTs) have been well-documented for the measurement of a broad range of organic pollutants in surface water. However, the performance has been challenged by the inherent periodic concentration fluctuations for most organic pollutants. Therefore, there is an urgent need to assess the true time-weighted average (TWA) concentration based on fluctuating concentration profiles. The study aimed to evaluate the responsiveness of DGT and accuracy of TWA concentrations, considering various concentration fluctuating scenarios of 20 pharmaceuticals in surface water. The reliability and accuracy of the TWA concentrations measured by the DGT were assessed by comparison with the sum of cumulative mass of DGT exposed at different stages over the deployment period. The results showed that peak concentration duration (1-5 days), peak concentration fluctuation intensity (6-20 times), and occurrence time of peak concentration fluctuation (early, middle, and late stages) have minimal effect on DGT's response to most target pharmaceutical concentration fluctuations (0.8 < CDGT/CTWA < 1.2). While the downward-bent accumulations of a few pharmaceuticals on DGT occur as the sampling time increases, which could be accounted for by capacity effects during a long-time sampling period. Additionally, the DGT device had good sampling performance in recording short fluctuating concentrations from a pulse event returning to background concentrations with variable intensity and duration. This study revealed a satisfactory capacity for the evaluation of the TWA concentration of pharmaceuticals integrated over the period of different pulse deployment for DGT, suggesting that this passive sampler is ideally suited as a monitoring tool for field application. This study represents the first trial for evaluating DGT sampling performance for pharmaceuticals with multiple concentration fluctuating scenarios over time, which would be valuable for assessing the pollution status in future monitoring campaign.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Difusión , Preparaciones Farmacéuticas
3.
Toxics ; 12(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38535904

RESUMEN

Various studies have shown that the heavy use of pharmaceuticals poses serious ecological risks, especially in metropolitan areas with intensive human activities. In this study, the spatial distribution, sources, and ecological risks of 29 pharmaceuticals in 82 surface waters collected from the North Canal Basin in Beijing were studied. The results showed that the pharmaceutical concentrations ranged from not detected to 193 ng/L, with ampicillin being undetected while ofloxacin had a 100% detection frequency, which indicates the widespread occurrence of pharmaceutical pollution in the North Canal Basin. In comparison with other freshwater study areas, concentrations of pharmaceuticals in the North Canal Basin were generally at moderate levels. It was found that pharmaceutical concentrations were always higher in rivers that directly received wastewater effluents. Source analysis was conducted using the positive matrix factorization model. Combining the spatial pollution patterns of pharmaceuticals, it has been found that wastewater effluents contributed the most to the loads of pharmaceuticals in the studied basin, while in suburban areas, a possible contribution of untreated wastewater was demonstrated. Risk assessment indicated that approximately 55% of the pharmaceuticals posed low-to-high ecological risks, and combining the results of risk analyses, it is advised that controlling WWTP effluent is probably the most cost-effective measure in treating pharmaceutical pollution.

4.
Toxics ; 12(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38535928

RESUMEN

As a replacement for polybrominated diphenyl ethers (PBDEs), organophosphorus flame retardants (OPFRs) have been widely used and detected in different indoor environments all over the world. This paper comprehensively describes the concentration levels and distribution information of 11 kinds of OPFRs from 33 indoor dust and 10 air environments, from which TBOEP, TCIPP, and TDCIPP were observed to have higher concentrations in indoor environments. The ΣOPFRs displayed higher concentrations in indoor dust than in indoor air due to the higher molecular weight and vapor pressure of ΣOPFRs in building decoration materials, specifically for TCIPP and TDCIPP compounds. Considering that it is inevitable that people will be exposed to these chemicals in the indoor environments in which they work and live, we estimated their potential health risks through three human exposure pathways and found that the ingestion exposure to TBOEP for toddlers in Japan may reach up to 1270.80 ng/kg/day, which comprises a significant pathway compared to dermal contact and indoor air inhalation. Specifically, the combined total exposure to OPFRs by air inhalation, dust ingestion, and dermal contact was generally below the RfD values for both adults and toddlers, with a few notable higher exposures of some typical OPFRs.

5.
Sci Total Environ ; 917: 170432, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38281635

RESUMEN

Sedimentary dissolved organic matter (DOM) could exert a significant influence on the transformation of trace organic contaminants. However, the variations of sedimentary DOM properties with depth and their impact on trace organic contaminants biodegradation remain unclear. In this study, the qualitative changes in DOM properties with depth were assessed using spectral techniques. Specifically, within the sediment range of 0-30 cm, humic acid and fulvic acid fractions exhibited higher degrees of humification and aromatization at 10-20 cm, while hydrophilic fractions showed higher degrees of humification and aromatization at 20-30 cm. Furthermore, electrochemical methods were employed to quantitatively assess the electron transfer capacity of sedimentary DOM at different depths, which displayed consistent variation trend with humification and aromatization degree. The high degree of humification and aromatization, along with strong electron-accepting capability of DOM, significantly enhanced the biodegradation rates of tetracycline and ritonavir. To gain deeper insights into the influence of molecular composition of DOM on its properties, two-dimensional gas chromatography-quadrupole mass spectrometry analysis revealed that quinones and phenolic hydroxyl compounds govern the redox reactivity of DOM. Simulated experiment of DOM-mediated biodegradation of typical pharmaceuticals confirmed the role of quinones and phenolic hydroxyl groups in the redox reactivity of DOM.


Asunto(s)
Materia Orgánica Disuelta , Sustancias Húmicas , Sustancias Húmicas/análisis , Biodegradación Ambiental , Quinonas , Preparaciones Farmacéuticas , Espectrometría de Fluorescencia
6.
Sci Total Environ ; 914: 169956, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211871

RESUMEN

Organophosphate esters (OPEs) are widespread in aquatic environments and pose potential threats to ecosystem and human health. Here, we profiled OPEs in surface water samples of heavily urbanized estuaries in eastern China and investigated the influence of watershed characteristics and human activities on the spatial distribution of OPEs related to dissolved organic matter (DOM). The total OPE concentration ranged from 22.3 to 1201 ng/L, with a mean of 162.6 ± 179.8 ng/L. Chlorinated OPEs were the predominant contaminant group, accounting for 27.4-99.6 % of the total OPE concentration. Tris(2-chloroisopropyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, and tributyl phosphate were the dominant compounds, with mean concentrations of 111.2 ± 176.0 ng/L, 22.6 ± 21.5 ng/L, and 14.8 ± 14.9 ng/L, respectively. Variable OPE levels were observed in various functional areas, with significantly higher concentrations in industrial areas than in other areas. Potential source analysis revealed that sewage treatment plant effluents and industrial activities were the primary OPE sources. The total OPE concentrations were negatively correlated to the mean slope, plan curvature, and elevation, indicating that watershed characteristics play a role in the occurrence of OPEs. Individual OPEs (triisobutyl phosphate, tris(2-butoxyethyl) phosphate, tris(2-chloroethyl) phosphate, and tricresyl phosphate) and Σalkyl-OPEs were positively correlated to the night light index or population density, suggesting a significant contribution of human activity to OPE pollution. The co-occurrence of OPEs and DOM was also observed, and the fluorescence indices of DOM were found to be possible indicators for tracing OPEs. These findings can elucidate the potential OPE dynamics in response to DOM in urbanized estuarine water environments with intensive human activities.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Humanos , Materia Orgánica Disuelta , Ecosistema , Retardadores de Llama/análisis , Organofosfatos/análisis , Fosfatos/análisis , China , Ésteres/análisis
7.
J Hazard Mater ; 465: 133363, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38157809

RESUMEN

The presence of antibiotics in environment is an emerging concern because of their ubiquitous occurrence, adverse eco-toxicological effects, and promotion of widespread antibiotic resistance. Urban soil, which plays a noticeable role in human health, may be a reservoir of antibiotics because of intensive human disturbance. However, little is understood about the vulnerability of soil to antibiotic contamination in urban areas and the spatial-temporal characteristics of anthropogenic and environmental pressures. In this study, we developed a framework for the dynamic assessment of soil vulnerability to antibiotic contamination in urban green spaces, combining antibiotic release, exposure, and consequence layers. According to the results, soil vulnerability risks shown obvious spatial-temporal variation in urban areas. Areas at a high risk of antibiotic contamination were usually found in urban centers with high population densities and in seasons with low temperature and vegetation coverage. Quinolones (e.g., ofloxacin and norfloxacin) were priority antibiotics that posed the highest vulnerability risks, followed by tetracyclines. We also confirmed the effectiveness of the vulnerability assessment by correlating soil vulnerability indexes and antibiotic residues in urban soils. Furthermore, urbanization- and land use-related parameters were shown to be critical in regulating soil vulnerability to antibiotic contamination based on sensitivity analysis. These findings have important implications for the prediction and mitigation of urban soil contamination with antibiotics and strategies to improve human health.


Asunto(s)
Antibacterianos , Contaminantes del Suelo , Humanos , Antibacterianos/análisis , Suelo , Urbanización , Parques Recreativos , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , China
8.
J Hazard Mater ; 465: 133224, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101022

RESUMEN

Human and veterinary antibiotics occur widely in soil ecosystems and pose a serious threat to soil health. Landscape structure can be linked to Earth surface processes and anthropogenic footprints and may influence the variability of antibiotics in soil. In this study, an improved landscape source-sink model was used to characterize source-sink structures using the location-weighted landscape index (LWLI), which can be linked to antibiotic seasonality. The topographic wetness index was employed to identify source and sink landscapes, which represent antibiotic transport pathways via topography-driven hydrological processes. The results indicate that LWLI values and antibiotic seasonality are typically higher in farmland soils than in forest and orchard soils. LWLI values exhibit significant positive correlations with antibiotic seasonality in soils (R2: 0.33-0.58). Furthermore, landscape source-sink structures have a significant influence on antibiotic seasonality between winter and other seasons in farmland soils; however, these structures affect antibiotic seasonality between summer and other seasons in forest and orchard soils. The results of this study indicate that water movement regulated by landscape structure may play a crucial role in influencing antibiotic seasonality in soils at the watershed scale, and the landscape source-sink model can be used to quantitatively evaluate antibiotic seasonality in soil environment.


Asunto(s)
Ecosistema , Suelo , Humanos , Suelo/química , Estaciones del Año , Monitoreo del Ambiente , Antibacterianos/análisis , China
9.
Sci Total Environ ; 912: 169393, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104845

RESUMEN

To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed. Comparatively, FR levels were relatively higher in developed regions in all mediums, and significant positive correlations between FR contamination and economic development level were observed in indoor dust and air. Over time, the concentration of BFRs showed a slightly decreasing trend in all mediums worldwide, whereas OPFRs represented an upward tendency in some regions (e.g., the USA and China). The occurrence levels of FRs and their metabolites in all external and internal media were generally correlated, implying a mutual indicative role among them. Dermal absorption generally contributed >60% of the total exposure of most FR monomers, and dust ingestion was dominant for several low volatile compounds, while inhalation was found to be negligible. The high-risk FR monomers (BDE-47, BDE-99 and TCIPP) identified by external exposure assessment showed similarity to the major FRs or metabolites observed in internal exposure mediums, suggesting the feasibility of using these methods to characterize human exposure and the contribution of indoor exposure to the human burden of FRs. This review highlights the significant importance of exposure assessment based on multiple mediums for future studies.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Humanos , Exposición a Riesgos Ambientales/análisis , Retardadores de Llama/análisis , Contaminación del Aire Interior/análisis , Polvo/análisis , Éteres Difenilos Halogenados/análisis , China , Medios de Cultivo/análisis , Organofosfatos/análisis , Monitoreo del Ambiente
10.
J Hazard Mater ; 459: 132286, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37595464

RESUMEN

The presence and reproduction of pathogens in soil environment have significant negative impacts on soil security and human health in urban-rural ecosystem. Rapid urbanization has dramatically changed the land use, soil ecosystems, and the presence of pathogens in soil environment, however, the risk associated with soil pathogens remains unknown. Identifying the potential risk of pathogens in soils in urban-rural ecosystem has become an urgent issue. In this study, we established a risk evaluation method for soil pathogens based on analytic hierarchy process and entropy methods to quantitatively estimate the potential risk of soil pathogens to children and adults in urban-rural ecosystem. The abundance and species number of soil pathogens, network structure of soil microbial community, and human exposure factors were considered with 12 indicators to establish the risk evaluation system. The results revealed that 19 potential pathogenic bacteria were detected in soils within a typical urban-rural ecosystem. Substantial differences were observed in both abundance and species of soil pathogens as well as network structure of soil microbial community from urban to rural areas. Urban areas exhibited relatively lower levels of soil pathogenic abundance, but the microbial network was considerably unstable. Rural areas supported relatively higher levels of soil pathogenic abundance and stable microbial networks. Notably, peri-urban areas showed relatively unstable microbial networks alongside higher levels of soil pathogenic abundance compared to other areas. The risk evaluation of soil pathogens for both adults and children showed that peri-urban areas presented the highest potential risk, with children being more susceptible than adults to threats posed by soil pathogens in both urban and peri-urban areas. The established evaluation system provides an innovative approach for quantifying risk of soil pathogens at regional scale and can be used as a reference for preventing soil pathogens contamination and enhancing soil health in areas with intense human activities.


Asunto(s)
Contaminación de Medicamentos , Microbiota , Adulto , Niño , Humanos , Consorcios Microbianos , Reproducción , Suelo
11.
Sci Total Environ ; 899: 165682, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478923

RESUMEN

Previous studies have demonstrated the importance of dissolved organic matter (DOM) on the biodegradation of trace organic contaminants occurred in the hyporheic zone. However, the role of diverse DOM fractions with distinct physicochemical properties on the biodegradation of pharmaceuticals under reducing conditions is scarcely known. To address this knowledge gap, DOMs derived from road-deposited sediment, soil, and active sludge (namely allochthonous DOM) and algae (namely autochthonous DOM) were collected and isolated into different fractions. Thereafter, the effect of DOM fractions on the anaerobic microbial oxidation of two typical pharmaceuticals, i.e., ritonavir (RTV) and tetracycline (TC) was explored by using simulated anaerobic microcosms. Mechanistic insights into how DOM fractions from different sources influence pharmaceutical biodegradation processes were provided by optical and electrochemical analyses. Results showed that humic acid and fulvic acid fractions from allochthonous DOM could enhance the biodegradation of TC (12.2 % per mgC/L) and RTV (14.5 % per mgC/L), while no significant impact was observed for that of hydrophilic fractions. However, autochthonous DOM promoted the biodegradation of TC (4.17 % per mgC/L) and inhibited that of RTV. Mechanistic analysis showed that the higher of humification and aromatization level of DOM components, the stronger their promotive effect on the biodegradation of TC and RTV. Further, the promotive mechanism could be attributed to the response of quinone moieties in DOM as extracellular electron acceptors that yields more energy to support microbial metabolism. These results provide a more comprehensive understanding of diverse DOM fractions mediating microbial anaerobic oxidation of trace organic pollutants, and extend our insights into contamination control and remediation technologies.


Asunto(s)
Materia Orgánica Disuelta , Sustancias Húmicas , Anaerobiosis , Oxidación-Reducción , Sustancias Húmicas/análisis , Preparaciones Farmacéuticas
12.
Environ Technol ; : 1-13, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37409802

RESUMEN

A novel and environmentally friendly magnetic iron zeolite (MIZ) core-shell were successfully fabricated using municipal solid waste incineration bottom ash-derived zeolite (MWZ) coated with Fe3O4 and innovatively investigated as a heterogeneous persulfate (PS) catalyst. The morphology and structure composition of as-prepared catalysts were characterised, and it was proved that the core-shell structure of MIZ was successfully synthesised by coating Fe3O4 uniformly on the MWZ surface. The tetracycline hydrochloride (TCH) degradation experiment indicate that the optimum equimolar amount of iron precursors was 3 mmol (MIZ-3). Compared with other systems, MIZ-3 possessed a superior catalytic performance, and the degradation efficiency of TCH (50 mg·L-1) in the MIZ-3/PS system reached 87.3%. The effects of reaction parameters on the catalytic activity of MIZ-3, including pH, initial concentration of TCH, temperature, the dosage of catalyst, and Na2S2O8, were assessed. The catalyst had high stability according to three recycling experiments and the leaching test of iron ions. Furthermore, the working mechanism of the MIZ-3/PS system to TCH was discussed. The electron spin resonance (ESR) results demonstrated that the reactive radicals generated in the MIZ-3/PS system were sulphate radical (SO4-∙) and hydroxyl radical (•OH). This work provided a novel strategy for TCH degradation under PS with a broad perspective on the fabrication of non-toxic and low-cost catalysts in practical wastewater treatment.

13.
Environ Pollut ; 331(Pt 2): 121893, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245793

RESUMEN

Synthetic musks, as an alternative product of natural musks, are widely used in almost all fragrances of consumer products, such as perfumes, cosmetics and detergents. During the past few decades, the production of synthetic musks has been increasing year by year, subsequently followed by large concern about their adverse effects on ecosystems and human beings. Until now, several studies have reviewed the latest development of analytical methods of synthetic musks in biological samples and cosmetics products, while there is still lack of a systematic analysis of their global distribution in different environmental media. Thus, this review summarizes the occurrence of synthetic musks in the environment including biota around the world and explores their global distribution patterns. The results show that galaxolide (HHCB), tonalide (AHTN), musk xylene (MX) and musk ketone (MK) are generally the most frequently detected synthetic musks in different samples with HHCB and AHTN being predominant. Higher concentrations of HHCB and AHTN are normally found in western countries compared to Asian countries, indicating more consumptions of these musks in western countries. The persistence, bioaccumulation and toxicity (PBT) of synthetic musks (mainly for polycyclic musks and nitro musks) are also discussed. The risk quotients (RQs) of HHCB, AHTN, MX and MK in most waters and sediments are below 0.1, reflecting a low risk to aqueous and sediment-dwelling species. In some sites, e.g., close to STPs, high risks (RQs>1) are characterized. Currently, limited data are available for macrocyclic musks and alicyclic musks in terms of either occurrence or PBT properties. More studies with an expanded scope of chemical type, geographical distribution and (synergic) toxicological effects especially from a long-term point of view are needed.


Asunto(s)
Cosméticos , Perfumes , Contaminantes Químicos del Agua , Humanos , Ecosistema , Perfumes/toxicidad , Perfumes/análisis , Cosméticos/toxicidad , Cosméticos/análisis , Tetrahidronaftalenos/toxicidad , Tetrahidronaftalenos/análisis , Xilenos/análisis , Ácidos Grasos Monoinsaturados/toxicidad , Ácidos Grasos Monoinsaturados/análisis , Benzopiranos/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
14.
Bioorg Chem ; 138: 106586, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37178651

RESUMEN

Fusobacterium nucleatum (F. nucleatum) is closely associated with the occurrence and development of colorectal cancer (CRC). Discovery of specific antibacterial agents against F. nucleatum was urgent for the prevention and treatment of CRC. We screened a natural product library and successfully identified higenamine as an antibacterial hit against F. nucleatum. Further hit optimizations led to the discovery of new higenamine derivatives with improved anti-F. nucleatum activity. Among them, compound 7c showed potent antibacterial activity against F. nucleatum (MIC50 = 0.005 µM) with good selectivity toward intestinal bacteria and normal cells. It significantly inhibited the migration of CRC cells induced by F. nucleatum. Mechanism study revealed that compound 7c impaired the integrity of biofilm and cell wall, which represents a good starting point for the development of novel anti-F. nucleatum agents.


Asunto(s)
Neoplasias Colorrectales , Humanos , Fusobacterium nucleatum , Antibacterianos/farmacología
15.
Biol Trace Elem Res ; 201(3): 1286-1300, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35397105

RESUMEN

Selenium (Se) is a vital trace element in the regulation of inflammation and antioxidant reactions in both animals and humans. Se deficiency is rapidly affecting lung function. The present study investigated the molecular mechanism of Se deficiency aggravates reactive oxygen species (ROS)-induced inflammation, leading to fibrosis in lung. Mice fed with different concentrations of Se to establish the model. In the Se-deficient group, the ROS and malondialdehyde (MDA) was increased, and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and catalase (CAT) reduced. The histopathological observation showed that Se deficiency lead to lung texture damage with varying degrees of degeneration, necrosis, shedding of some alveolar epithelial cells, and inflammatory cell infiltration. Immunohistochemistry showed that the expression of α-smooth muscle actin (α-SMA) increased. The fibrosis index was verified with Sirius red staining. The ELISA and qPCR results showed that the inflammatory cytokines (TNF-α and IL-1ß) and ECM (collagen I, collagen IV, fibronectin, and laminin) were increased with ROS increasing, which was induced by Se deficiency. The results displayed that oxidative stress with Se deficiency led to an increase in tissue inhibitors of metalloproteinase (TIMPs), but a decrease in matrix metalloproteinases (MMPs). All the results indicated that Se deficiency induced excessive ROS accumulation to generate inflammation, which disrupted ECM homeostasis and aggravated fibrosis in the lung.


Asunto(s)
Desnutrición , Selenio , Humanos , Ratones , Animales , Antioxidantes/metabolismo , Selenio/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Pulmón/metabolismo , Superóxido Dismutasa/metabolismo , Inflamación/inducido químicamente , Fibrosis , Colágeno
16.
Environ Pollut ; 311: 119979, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988678

RESUMEN

Pharmaceutical contaminants in surface water have raised significant concerns because of their potential ecological risks. In particular, coronavirus disease 2019 (COVID-19)-related pharmaceuticals can be released to surface water and reduce environmental water quality. Therefore, reliable and robust sampling tools are required for monitoring pharmaceuticals. In this study, passive sampling devices of diffusive gradients in thin films (DGTs) were developed for sampling 35 pharmaceuticals in surface waters. The results demonstrated that hydrophilic-lipophilic balance (HLB) was more suitable for DGT-based devices compared with XAD18 and XDA1 resins. For most pharmaceuticals, the performance of the HLB-DGT devices were independent of pH (5.0-9.0), ionic strength (0.001-0.5 M), and flow velocity (0-400 rpm). The HLB-DGT devices exhibited linear pharmaceutical accumulation for 7 days, and time-weighted average concentrations provided by the HLB-DGT were comparable to those measured by conventional grab sampling. Compared to previous studies, we extended DGT monitoring to include three antiviral drugs used for COVID-19 treatment, which may inspire further exploration on identifying the effects of COVID-19 on ecological and human health.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Contaminantes Químicos del Agua , Difusión , Monitoreo del Ambiente/métodos , Humanos , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis
17.
Bull Environ Contam Toxicol ; 109(2): 417-423, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35639119

RESUMEN

Polycyclic musks (PCMs) in soils have been of increasing concern because of their potential characteristics of persistence, bioaccumulation, and ecological risk. However, little is known about their fate process in soil environment. Here, two PCMs namely galaxolide (HHCB) and tonalide (AHTN) were selected as sorbates to explore their sorption process in soils. Sorption batch experiments with six soils and their different aggregate fractions were carried out to elucidate the effect of organic matter-mineral interactions in different aggregate fractions on sorption of these two PCMs. The possible causes of variation in the organic carbon-normalized partition coefficient (Koc) for HHCB and AHTN have been investigated. The strong influence of organic matter-mineral interactions on Koc was evidenced by the large variation in Koc on HF-treatment for both bulk soils and their different aggregate fractions. This study verified the dual effect of organic matter-mineral interactions among selected soils, and in promoting or inhibiting sorption may be related to the types of organic matter-mineral interactions. There were also interactions between soil components with different aggregate sizes, which affected the variation of Koc in the bulk soil. This study represents a valuable contribution to the understanding of the fate processes and behaviors of HHCB and AHTN in soils and its implication on the risk assessment.


Asunto(s)
Contaminantes del Suelo , Suelo , Adsorción , Carbono , Minerales , Contaminantes del Suelo/análisis
18.
J Environ Manage ; 302(Pt B): 114096, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34775339

RESUMEN

To quantitate the degradation rate of 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[g]-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) under field conditions, a level III fugacity model combined with a least-squares method was used to determine the degradation rate of HHCB and AHTN in the North Canal River watershed of Beijing, China. Model fitting, validation, sensitivity, and uncertainty analyses revealed that the established model was stable and robust. The degradation rates of HHCB and AHTN were 4.16 × 10-3 h-1 (t1/2 = 167 h) and 1.68 × 10-2 h-1 (t1/2 = 41.3 h), respectively. The calculated degradation rates were extrapolated to the Liangshui River, and indicated that the differences between the measured and predicted concentrations were less than 0.32 and 0.34 log units for HHCB and AHTN, respectively. The attenuation rates of HHCB and AHTN were calculated, and the results indicated that degradation was an important yet not the sole contributor to the degradation of the polycyclic musks. Results of uncertainty analyses indicated that the inflow and outflow concentrations of the polycyclic musks in the surface water of each segment strongly influenced the model outputs, followed by environmental factors (water depth and flow rate). It is essential to measure the degradation rate in the field because of the influence of the surrounding environment. The present study reveals the utility of fugacity models to quantify the degradation rate of organic micropollutants in the field.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Beijing , Benzopiranos/análisis , Monitoreo del Ambiente , Tetrahidronaftalenos/análisis , Contaminantes Químicos del Agua/análisis
19.
Sci Total Environ ; 796: 148750, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34265617

RESUMEN

This study investigated the early responses of four common food crops (Italian lettuce, radish, wheat and corn) by exposing their seeds to suspensions of polystyrene nanoparticles (nano-PS) and microspheres (micro-PS). We found that the crop responses to exposure to nano-PS and micro-PS at different doses were dependent on the plant species. Among the four species, Italian lettuce was the most sensitive crop in terms of seed germination and its germination index after polystyrene exposure for 7 days was inhibited by 18.2%-36.0% compared with that of the control (p < 0.05). The root growth (root dry weight, root/shoot ratio and root length) of Italian lettuce and corn was significantly inhibited by the exposure treatment (p < 0.05), whereas that of radish and wheat was hardly affected. Analyses of antioxidant enzymatic activities, lipid peroxidation, and integrated biomarker indexes confirmed that the toxic effects of nano-PS and micro-PS on crops are likely due to oxidative stress. The observed distribution of fluorescent nano-PS in the roots or germs of the tested crops suggests that nanoplastics can be taken up by plants even at a very early growth stage (<7 days after sowing). Future research is needed in order to obtain more insights into their implications for agricultural sustainability and food safety.


Asunto(s)
Microplásticos , Poliestirenos , Productos Agrícolas , Germinación , Plásticos
20.
Sci Total Environ ; 786: 147452, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-33975111

RESUMEN

During past two decades, steroid hormones have raised significant public concerns due to their potential adverse effects on the hormonal functions of aquatic organisms and humans. Considering China being a big producer and consumer of steroid hormones, we summarize the current contamination status of steroid hormones in different environmental compartments in China, and preliminarily assess the associated risks to ecological systems. The results show that steroid hormones are ubiquitously present in Chinese surface waters where estrogens are the most studied steroids compared with androgens, progestogens and glucocorticoids. Estrone (E1), 17ß-estradiol (17ß-E2) and estriol (E3) are generally the dominant steroid estrogens in Chinese surface waters, whereas for the other steroids, androsterone (ADR), epi-androsterone (EADR), progesterone (PGT), cortisol (CRL) and cortisone (CRN) have relatively large contributions. Meanwhile, the investigations for the other environmental media such as particles, sediments, soils and groundwater have been limited, as well as for steroid conjugates and metabolites. The median risk quotients of most steroid hormones in surface waters and sediments are lower than 1, indicating low to moderate risks to local organisms. This review provides a full picture of steroid distribution and ecological risks in China, which may be useful for future monitoring and risk assessment. More studies may focus on the analysis of steroid conjugates, metabolites, solid phase fractions, analytical method development and acute/chronic toxicities in different matrices to pursue a more precise and holistic risk assessment.


Asunto(s)
Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Estrógenos/análisis , Estrona/análisis , Humanos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA