Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 247
1.
Adv Mater ; : e2404692, 2024 May 16.
Article En | MEDLINE | ID: mdl-38752852

Introducing asymmetric elements and breaking the geometric symmetry of traditional metal-N4 site for boosting oxygen reduction reaction (ORR) are meaningful and challenging. Herein, the planar chlorination engineering of Fe-N4 site was firstly proposed for remarkably improving the ORR activity. The Fe-N4/CNCl catalyst with broken symmetry exhibited a half-wave potential (E1/2) of 0.917 V versus RHE, 49 mV and 72 mV higher than those of traditional Fe-N4/CN and commercial 20 wt% Pt/C catalysts. The Fe-N4/CNCl catalyst also had excellent stability for 25,000 cycles and good methanol tolerance ability. For Zn-air battery test, the Fe-N4/CNCl catalyst had the maximum power density of 228 mW/cm2 and outstanding stability during 150 h charge-discharge test, as the promising substitute of Pt-based catalysts in energy storage and conversion devices. The density functional theory calculation demonstrated the adjacent C-Cl bond effectively broke the symmetry of Fe-N4 site, downward shifted the d-band center of Fe, facilitated the reduction and release of OH*, and remarkably lower the energy barrier of rate-determining step. This work revealed the enormous potentials of planar chlorination engineering for boosting the ORR activity of traditional metal-N4 site by thoroughly breaking their geometric symmetry. This article is protected by copyright. All rights reserved.

2.
Angew Chem Int Ed Engl ; : e202404386, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720177

Based on the electron-withdrawing effect of the Pt(bpy)Cl2 molecule, a simple post-modification amide reaction was firstly used to graft it onto the surface of NH2-MIL-125, which formed a highly efficient electron acceptor that induced the conversion of the photoinduced charge migration pathway from internal BDC→TiOx migration to external BDC→PtNx migration, significantly improving the efficiency of photoinduced electron transfer and separation. Furthermore, precise control over the first coordination sphere of Pt single atoms was achieved using further post-modification with additional bipyridine to investigate the effect of Pt-Nx coordination numbers on reaction activity. The as-synthesized NML-PtN2 exhibited superior photocatalytic hydrogen evolution activity of 7.608 mmol g-1 h-1, a remarkable improvement of 225 and 2.26 times compared to pristine NH2-MIL-125 and NML-PtN4, respectively. In addition, the superior apparent quantum yield of 4.01% (390 nm) and turnover frequency of 190.3 h-1 (0.78 wt% Pt SA; 129 times compared to Pt nanoparticles/NML) revealed the high solar utilization efficiency and hydrogen evolution activity of the material. And macroscopic color changes caused by the transition of carrier migration paths was first observed. It holds profound significance for the design of MOF-Molecule catalysts with efficient charge carrier separation and precise regulation of single-atom coordination sphere.

3.
Angew Chem Int Ed Engl ; : e202406956, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713527

Supramolecular assembly frameworks (SAFs) represent a new category of porous materials, utilizing non-covalent interactions, setting them apart from metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). This category includes but is not restricted to hydrogen-bonded organic frameworks and supramolecular organic frameworks. SAFs stand out for their outstanding porosity, crystallinity, and stability, alongside unique dissolution-recrystallization dynamics that enable significant structural and functional modifications. Crucially, their non-covalent assembly strategies allow for a balanced manipulation of porosity, symmetry, crystallinity, and dimensions, facilitating the creation of advanced crystalline porous materials unattainable through conventional covalent or coordination bond synthesis. Despite their considerable promise in overcoming several limitations inherent to MOFs and COFs, particularly in terms of solution-processability, SAFs have received relatively little attention in recent literature. This Minireview aims to shed light on standout SAFs, exploring their design principles, synthesis strategies, and characterization methods. It emphasizes their distinctive features and the broad spectrum of potential applications across various domains, aiming to catalyze further development and practical application within the scientific community.

4.
J Am Chem Soc ; 146(20): 14357-14367, 2024 May 22.
Article En | MEDLINE | ID: mdl-38726589

Introducing dynamic behavior into periodic frameworks has borne fruit in the form of flexible porous crystals. The detailed molecular design of frameworks in order to control their collective dynamics is of particular interest, for example, to achieve stimulus-induced behavior. Herein, by varying the degree of rigidity of ditopic pillar linkers, two isostructural flexible metal-organic frameworks (MOFs) with common rigid supermolecular building bilayers were constructed. The subtle substitution of single (in bibenzyl-4,4'-dicarboxylic acid; H2BBDC) with double (in 4,4'-stilbenedicarboxylic acid; H2SDC) C-C bonds in pillared linkers led to markedly different flexible behavior of these two MOFs. Upon the removal of guest molecules, both frameworks clearly show reversible single-crystal-to-single-crystal transformations involving the cis-trans conformation change and a resulting swing of the corresponding pillar linkers, which gives rise to Flex-Cd-MOF-1a and Flex-Cd-MOF-2a, respectively. Strikingly, a more favorable gas-induced dynamic behavior in Flex-Cd-MOF-2a was verified in detail by stepwise C3H6/C3H8 sorption isotherms and the corresponding in situ powder X-ray diffraction experiments. These insights are strongly supported by molecular modeling studies on the sorption mechanism that explores the sorption landscape. Furthermore, a consistency between the macroscopic elasticity and microscopic flexibility of Flex-Cd-MOF-2 was observed. This work fuels a growing interest in developing MOFs with desired chemomechanical functions and presents detailed insights into the origins of flexible MOFs.

5.
Inorg Chem ; 63(18): 8329-8335, 2024 May 06.
Article En | MEDLINE | ID: mdl-38648287

Most of the porous materials used for acetylene/carbon dioxide separation have the problems of poor stability and high energy requirements for regeneration, which significantly hinder their practical application in industries. Here, we report a novel calcium-based metal-organic framework (NKM-123) with excellent chemical stability against water, acids, and bases. Additionally, it has exceptional thermal stability, retaining its structural integrity at temperatures up to 300 °C. This material exhibits promising potential for separating C2H2 and CO2 gases. Furthermore, it demonstrates an adsorption heat of 29.3 kJ mol-1 for C2H2, which is lower than that observed in the majority of MOFs used for C2H2/CO2 separations. The preferential adsorption of C2H2 over that of CO2 is confirmed by dispersion-corrected density functional theory (DFT-D) calculations. In addition, the potential of industrial feasibility of NKM-123 for C2H2/CO2 separation is confirmed by transient breakthrough tests. The robust cycle performance and structural stability of NKM-123 during multiple breakthrough tests show great potential in the industrial separation of light hydrocarbons.

6.
Small Methods ; : e2301662, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38634221

Broadband emission in hybrid lead halide perovskites (LHPs) has gained significant attention due to its potential applications in optoelectronic devices. The origin of this broadband emission is primarily attributed to the interactions between electrons and phonons. Most investigations have focused on the impact of structural characteristics of LHPs on broadband emission, while neglecting the role of electronic mobility. In this work, the study investigates the electronic origins of broadband emission in a family of 2D LHPs. Through spectroscopic experiments and density functional theory calculations, the study unveils that the electronic states of the organic ligands with conjugate effect in LHPs can extend to the band edges. These band-edge carriers are no longer localized only within the inorganic layers, leading to electronic coupling with molecular states in the barrier and giving rise to additional interactions with phonon modes, thereby resulting in broadband emission. The high-pressure photoluminescence measurements and theoretical calculations reveal that hydrostatic pressure can induce the reconfiguration of band-edge states of charge carriers, leading to different types of band alignment and achieving macroscopic control of carrier dynamics. The findings can provide valuable guidance for targeted synthesis of LHPs with broadband emission and corresponding design of state-of-the-art optoelectronic devices.

7.
Chem Soc Rev ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38655667

Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.

8.
Chem Sci ; 15(12): 4529-4537, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38516073

The rational design and construction of hydrogen-bonded organic frameworks (HOFs) are crucial for enabling their practical applications, but controlling their structure and preparation as intended remains challenging. Inspired by reticular chemistry, two novel blue-emitting NKM-HOF-1 and NKM-HOF-2 were successfully constructed based on two judiciously designed peripherally extended pentiptycene carboxylic acids, namely H8PEP-OBu and H8PEP-OMe, respectively. The large pores within these two HOFs can adsorb fluorescent molecules such as diketopyrrolopyrrole (DPP) and 9-anthraldehyde (AnC) to form HOFs ⊃ DPP/AnC composites, subsequently used in the fabrication of white-light-emitting devices (WLEDs). Specifically, two WLEDs were assembled by coating NKM-HOF-1 ⊃ DPP-0.13/AnC-3.5 and NKM-HOF-2 ⊃ DPP-0.12/AnC-3 on a 330 nm ultraviolet LED bulb, respectively. The corresponding CIE coordinates were (0.29, 0.33) and (0.32, 0.34), along with corresponding color temperatures of 7815 K and 6073 K. This work effectively demonstrates the feasibility of employing reticular chemistry strategies to predict and design HOFs with specific topologies for targeted applications.

9.
Angew Chem Int Ed Engl ; 63(19): e202400644, 2024 May 06.
Article En | MEDLINE | ID: mdl-38470139

Chiral hybrid organic-inorganic metal halides (HOMHs) offer an ideal platform for the advancement of second-order nonlinear optical (NLO) materials owing to their inherent noncentrosymmetric structures. The enhancement of optical nonlinearity of chiral HOMHs could be achieved by matching the free exciton and/or self-trapped exciton energy levels with desired NLO frequencies. However, the current scarcity of resonance modes and low resonance ratio hamper the further improvements of NLO performance. Herein, we propose a new resonant channel of charge transfer (CT) excited states from metal halide polyhedra to organic ligand to boost the second-order optical nonlinearity of chiral HOMHs. The model lead halide (C7H10N)PbBr3 (C7H10N=1-ethylpyridinium) exhibits a drastically enhanced second harmonic generation in resonance to the deep CT exciton energy, with intensity of up to 111.0 times that of KDP and 10.9 times that of urea. The effective NLO coefficient has been determined to be as high as ~40.2 pm V-1, balanced with a large polarization ratio and high laser damage threshold. This work highlights the contribution of organic ligands in the construction of a resonant channel for enhancing second-order NLO coefficients of metal halides, and thus provides guidelines for designing new chiral HOMHs materials for advanced nonlinear photonic applications.

10.
JACS Au ; 4(2): 279-300, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38425899

Flexible crystals have gained significant attention owing to their remarkable pliability, plasticity, and adaptability, making them highly popular in various research and application fields. The main challenges in developing flexible crystals lie in the rational design, preparation, and performance optimization of such crystals. Therefore, a comprehensive understanding of the fundamental origins of crystal flexibility is crucial for establishing evaluation criteria and design principles. This Perspective offers a retrospective analysis of the development of flexible crystals over the past two decades. It summarizes the elastic standards and possible plastic bending mechanisms tailored to diverse flexible crystals and analyzes the assessment of their theoretical basis and applicability. Meanwhile, the compatibility between crystal elasticity and plasticity has been discussed, unveiling the immense prospects of elastic/plastic crystals for applications in biomedicine, flexible electronic devices, and flexible optics. Furthermore, this Perspective presents state-of-the-art experimental avenues and analysis methods for investigating molecular interactions in molecular crystals, which is vital for the future exploration of the mechanisms of crystal flexibility.

11.
Angew Chem Int Ed Engl ; 63(22): e202403646, 2024 May 27.
Article En | MEDLINE | ID: mdl-38494740

Organic piezochromic materials that manifest pressure-stimuli-responses are important in various fields such as data storage and anticounterfeiting. The manipulation of piezofluorochromic behaviors for these materials is promising but remains a great challenge. Herein, a non-luminous components regulated strategy is developed and organic molecular cages (OMCs), a burgeoning class of crystalline organic materials with structural dynamics, are first explored for the design of piezofluorochromic materials with tunable luminescence. A series of OMCs based on aggregation-induced emission (AIE) chromophores, termed Cage 1-3, are synthesized and their piezofluorochromic behaviors are investigated by diamond anvil cell technique. Due to the sufficient voids between its flexible chromophores offered by the OMC structure, Cage 1 exhibits thermofluorochromic and piezofluorochromic properties. Moreover, the piezofluorochromic performance of this OMC could be further promoted by replacing its non-luminous components with improved flexibilities, and a remarkable luminescence peak shift by 150 nm together with a response sensitivity of 13.8 nm GPa-1 was achieved upon hydrostatic compression. The cage structure plays a vital role in facilitating efficient and reversible piezofluorochromic behaviors. This study has shed light on the rational design and exploitation of OMCs as an exceptional platform to accomplish customizable piezofluorochromic behaviors and enlarge their potential applications in pressure-based luminescence.

12.
Chem Sci ; 15(10): 3530-3538, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38455020

Stimuli-responsive optical materials have provided a powerful impetus for the development of intelligent optoelectronic devices. The family of organic-inorganic hybrid metal halides, distinguished by their structural diversity, presents a prospective platform for the advancement of stimuli-responsive optical materials. Here, we have employed a crown ether to anchor the A-site cation of a chiral antimony halide, enabling convenient control and modulation of its photophysical properties. The chirality-dependent asymmetric lattice distortion of inorganic skeletons assisted by a crown ether promotes the formation of self-trapped excitons (STEs), leading to a high photoluminescence quantum yield of over 85%, concomitant with the effective circularly polarized luminescence. The antimony halide enantiomers showcase highly sensitive stimuli-responsive luminescent behaviours towards excitation wavelength and temperature simultaneously, exhibiting a versatile reversible colour switching capability from blue to white and further to orange. In situ temperature-dependent luminescence spectra, time-resolved luminescence spectra and theoretical calculations reveal that the multi-stimuli-responsive luminescent behaviours stem from distinct STEs within zero-dimensional lattices. By virtue of the inherent flexibility and adaptability, these chiral antimony chlorides have promising prospects for future applications in cutting-edge fields such as multifunctional illumination technologies and intelligent sensing devices.

13.
Adv Mater ; 36(19): e2309231, 2024 May.
Article En | MEDLINE | ID: mdl-38345181

Dual-metal center catalysts (DMCs) have shown the ability to enhance the oxygen reduction reaction (ORR) owing to their distinctive structural configurations. However, the precise modulation of electronic structure and the in-depth understanding of synergistic mechanisms between dual metal sites of DMCs at the atomic level remain challenging. Herein, mimicking the ferredoxin, Fe-based DMCs (Fe2N6-S) are strategically designed and fabricated, in which additional Fe and S sites are synchronously installed near the Fe sites and serve as "dual modulators" for coarse- and fine-tuning of the electronic modulation, respectively. The as-prepared Fe2N6-S catalyst exhibits enhanced ORR activity and outstanding Zinc-air (Zn-air) battery performance compared to the conventional single Fe site catalysts. The theoretical and experimental results reveal that introducing the second metal Fe creates a dual adsorption site that alters the O2 adsorption configuration and effectively activates the O─O bond, while the synergistic effect of dual Fe sites results in the downward shift of the d-band center, facilitating the release of OH*. Additionally, local electronic engineering of heteroatom S for Fe sites further facilitates the formation of the rate-determining step OOH*, thus accelerating the reaction kinetics.

14.
J Am Chem Soc ; 146(12): 8206-8215, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38412246

Spin-crossover (SCO) materials exhibit remarkable potential as bistable switches in molecular devices. However, the spin transition temperatures (Tc) of known compounds are unable to cover the entire ambient temperature spectrum, largely limiting their practical utility. This study reports an exemplary two-dimensional SCO solid solution system, [FeIII(H0.5LCl)2-2x(H0.5LF)2x]·H2O (H0.5LX = 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, X = F or Cl, x = 0 to 1), in which the adjacent layers are adhered via hydrogen bonding. Notably, the Tc of this system can be fine-tuned across 90 K (227-316 K) in a linear manner by modulating the fraction x of the LF ligand. Elevating x results in strengthened hydrogen bonding between adjacent layers, which leads to enhanced intermolecular interactions between adjacent SCO molecules. Single-crystal diffraction analysis and periodic density functional theory calculations revealed that such a special kind of alteration in interlayer interactions strengthens the FeIIIN2O2S2 ligand field and corresponding SCO energy barrier, consequently resulting in increased Tc. This work provides a new pathway for tuning the Tc of SCO materials through delicate manipulation of molecular interactions, which could expand the application of bistable molecular solids to a much wider temperature regime.

15.
J Am Chem Soc ; 146(8): 5414-5422, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38353405

Molecular-based multiferroic materials that possess ferroelectric and ferroelastic orders simultaneously have attracted tremendous attention for their potential applications in multiple-state memory devices, molecular switches, and information storage systems. However, it is still a great challenge to effectively construct novel molecular-based multiferroic materials with multifunctionalities. Generally, the structure of these materials possess high symmetry at high temperatures, while processing an obvious order-disorder or displacement-type ferroelastic or ferroelectric phase transition triggered by symmetry breaking during the cooling processes. Therefore, these materials can only function below the Curie temperature (Tc), the low of which is a severe impediment to their practical application. Despite great efforts to elevate Tc, designing single-phase crystalline materials that exhibit multiferroic orders above room temperature remains a challenge. Here, an inverse temperature symmetry-breaking phenomenon was achieved in [FPM][Fe3(µ3-O)(µ-O2CH)8] (FPM stands for 3-(3-formylamino-propyl)-3,4,5,6-tetrahydropyrimidin-1-ium, which acts as the counterions and the rotor component in the network), enabling a ferroelastoelectric phase at a temperature higher than Tc (365 K). Upon heating from room temperature, two-step distinct symmetry breaking with the mm2Fm species leads to the coexistence of ferroelasticity and ferroelectricity in the temperature interval of 365-426 K. In the first step, the FPM cations undergo a conformational flip-induced inverse temperature symmetry breaking; in the second step, a typical ordered-disordered motion-induced symmetry breaking phase transition can be observed, and the abnormal inverse temperature symmetry breaking is unprecedented. Except for the multistep ferroelectric and ferroelastic switching, this complex also exhibits fascinating nonlinear optical switching properties. These discoveries not only signify an important step in designing novel molecular-based multiferroic materials with high working temperatures, but also inspire their multifunctional applications such as multistep switches.

16.
ACS Nano ; 18(4): 3251-3259, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38227818

The phenomenon of pressure-induced emission alterations related to complex excitonic dynamics in 2D lead halide perovskites (LHPs) has gained considerable attention for understanding their structure-property relationship and obtaining inaccessible luminescence under ambient conditions. However, the well-known pressure-induced emissions are limited to the formation of self-trapped excitons (STEs) due to the structural distortion under compression, which goes against the advantage of the highly pure emission of LHPs. Here, the pressure-induced detrapping from STEs to free excitons (FEs) accompanied by the dramatic transition from broadband orangish emission to narrow blue emission has been achieved in chiral 2D LHPs and R- and S-[4MeOPEA]2PbBr4, (4MeOPEA = 4-methoxy-α-methylbenzylammonium). The combined experimental and calculated results reveal that the distortion level of PbBr6 octahedra of R- and S-[4MeOPEA]2PbBr4 exhibits an unusually significant reduction as the applied pressure increases, which leads to decreased electron-phonon coupling and self-trapped energy barrier and consequently enables the detrapping of STEs to FEs. This work illustrates the dramatic exciton transfer in 2D LHPs and highlights the potential for realizing highly efficient and pure light emissions by manipulating the structural distortion via strain engineering.

17.
J Am Chem Soc ; 145(49): 26833-26842, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38039190

Halogen substitution has been proven as an effective approach to the band gap engineering and optoelectronic modulation of organic-inorganic hybrid metal halide (OIHMH) materials. Various high-performance mixed halide OIHMH film materials have been primarily obtained through the substitution of coordinated halogens in their inorganic octahedra. Herein, we propose a new strategy of substitution of free halogen outside the inorganic octahedra for constructing mixed halide OIHMH single crystals with chiral structures, resulting in a boost of their linear and nonlinear chiroptical properties. The substitution from DMA4[InCl6]Cl (DMA = dimethylammonium) to DMA4[InCl6]Br crystals through a facile antisolvent vaporization method produces centimeter-scale single crystals with high thermal stability along with high quantum yield photoluminescence, conspicuous circularly polarized luminescence, and greatly enhanced second harmonic generation (SHG). In particular, the obtained DMA4[InCl6]Br single crystal features an intrinsic chiral structure, exhibiting a significant SHG circular dichroism (SHG-CD) response with a highest reported anisotropy factor (gSHG-CD) of 1.56 among chiral OIHMH materials. The enhancements in both linear and nonlinear chiroptical properties are directly attributed to the modulation of octahedral distortion. The mixed halide OIHMH single crystals obtained by free halogen substitution confine the introduced halogens within free halogen sites of the lattice, thereby ensuring the stability of compositions and properties. The successful employment of such a free halogen substitution approach may broaden the horizon of the regulation of structures and the optoelectronic properties of the OIHMH materials.

18.
J Am Chem Soc ; 145(41): 22475-22482, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37797315

Hybrid organic-inorganic perovskites (HOIPs) have exhibited striking application potential in piezoelectric energy harvesting and sensing due to their high piezoelectricity, light weight, and solution processability. However, to date, the application of piezoelectric HOIPs in ultrasound detection has not yet been explored. Here, we report the synthesis of a pair of chiral two-dimensional piezoelectric HOIPs, R-(4-bromo-2-butylammonium)2PbBr4 and S-(4-bromo-2-butylammonium)2PbBr4 [R-(BrBA)2PbBr4 and S-(BrBA)2PbBr4], which show low mechanical strength and significant piezoelectric strain coefficients that are advantageous for mechanoelectrical energy conversion. Benefiting from these virtues, the R-(BrBA)2PbBr4@PBAT and S-(BrBA)2PbBr4@PBAT [PBAT = poly(butyleneadipate-co-terephthalate)] composite films show prominent underwater ultrasound detection performance with a transmission effectivity of 12.0% using a 10.0 MHz probe, comparable with that of a polyvinylidene fluoride (PVDF) device fabricated in the same conditions. Density functional theory calculations reveal that R-(BrBA)2PbBr4 and S-(BrBA)2PbBr4 have a beneficial acoustic impedance (5.07-6.76 MRayl) compatible with that of water (1.5 MRayl), which is responsible for the facile ultrasound-induced electricity generation. These encouraging results open up new possibilities for applying piezoelectric HOIPs in underwater ultrasound detection and imaging technologies.

19.
J Am Chem Soc ; 145(42): 23227-23237, 2023 Oct 25.
Article En | MEDLINE | ID: mdl-37843005

The synthesis and application of three-dimensional (3D) mesoporous covalent-organic frameworks (COFs) are still to be developed. Herein, two mesoporous 3D COFs with an stp topology were synthesized in a highly crystalline form with aniline as the modulator. The chemical composition of these COFs was confirmed by Fourier transform infrared (FT-IR) and 13C cross-polarization magic angle spinning nuclear magnetic resonance (NMR) spectroscopies. These 3D mesoporous COFs were highly crystalline and exhibited permanent porosity and good chemical stability in both aqueous and organic media. The space group and unit cell parameters of COF HFPTP-TAE were verified by powder X-ray diffraction (PXRD), small-angle X-ray scattering, and three-dimensional electron diffraction (3D ED). The appropriate pore size of the COF HFPTP-TAE facilitated the inclusion of enzyme lipase PS with a loading amount of 0.28 g g-1. The lipase⊂HFPTP-TAE (⊂ refers to "include in") composite exhibited high catalytic activity, good thermal stability, and a wide range of solvent tolerance. Specifically, it could catalyze the alcoholysis of aspirin methyl ester (AME) with high catalytic efficiency. Oriented one-dimensional (1D) channel mesopores in HFPTP-TAE accommodated lipase, meanwhile preventing them from aggregation, while windows on the wall of the 1D channel favored molecular diffusion; thus, this COF-enzyme design outperformed its amorphous isomer, two-dimensional (2D) mesoporous COF, 3D mesoporous COF with limited crystallinity, and mesoporous silica as an enzyme host.

20.
Dalton Trans ; 52(38): 13737-13744, 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37712291

Rechargeable aqueous zinc-ion batteries (ZIBs) are highly promising energy storage devices due to their advantages of high energy density, low cost, environmental friendliness, and excellent safety. Investigation of advanced cathode materials featuring high capacity is desired for their applications in high-capacity ZIBs. In this study, a porous N-doped carbon-coated manganese oxide/zinc manganate (MZM@N-C) composite was successfully prepared as an advanced cathode material for aqueous ZIBs. The MZM@N-C cathode demonstrated a superior specific capacity of 772.8 mA h g-1 at 50 mA g-1 and maintained a high specific capacity of 205 mA h g-1 after 300 cycles at a high current density of 500 mA g-1. As compared to the unmodified MnOx cathode, MZM@N-C has a higher reversible capacity and cycling stability which could be assigned to the robust one-dimensional (1D) structure and the synergistic effect of MZM@N-C, providing instructive insight into the design of high-capacity manganese-based cathodes for rechargeable aqueous ZIBs. Furthermore, a soft-pack battery was assembled using the MZM@N-C cathode, demonstrating its potential applications in various devices.

...