Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Biol Eng Comput ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822996

RESUMEN

Research at the mesoscale bone trabeculae arrangement yields intriguing results that, due to their clinical resolution, can be applied in clinical field, contributing significantly to the diagnosis of bone-related diseases. While the literature offers quantitative morphometric parameters for a thorough characterization of the mesoscale bone network, there is a gap in understanding relationships among them, particularly in the context of various bone pathologies. This research aims to bridge these gaps by offering a quantitative evaluation of the interplay among morphometric parameters and mechanical response at mesoscale in osteoporotic and non-osteoporotic bones. Bone mechanical response, dependent on trabecular arrangement, is defined by apparent stiffness, computationally calculated using the Gibson-Ashby model. Key findings indicate that: (i) in addition to bone density, measured using X-ray absorptiometry, trabecular connectivity density, trabecular spacing and degree of anisotropy are crucial parameters for characterize osteoporosis state; (ii) apparent stiffness values exhibit strong correlations with bone density and connectivity density; (iii) connectivity density and degree of anisotropy result the best predictors of mechanical response. Despite the inherent heterogeneity in bone structure, suggesting the potential benefit of a larger sample size in the future, this approach presents a valuable method to enhance discrimination between osteoporotic and non-osteoporotic samples.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38083338

RESUMEN

Bone microscale differences cannot be readily recognizable to humans from Synchrotron Radiation micro-Computed Tomography (SR-microCT) images. Premises are possible with Deep Learning (DL) imaging analysis. Despite this, more attention to high-level features leads models to require help identifying relevant details to support a decision. Within this context, we propose a method for classifying healthy, osteoporotic, and COVID-19 femoral heads SR-microCT images informing a vgg16 about the most subtle microscale differences using unsupervised patched-based clustering. Our strategy allows achieving up to 9.8% accuracy improvement in classifying healthy from osteoporotic images over uninformed methods, while 59.1% of accuracy between osteoporosis and COVID-19.Clinical relevance-We established a starting point for classifying healthy, osteoporotic, and COVID-19 femoral heads from SR-microCTs with human non-discriminative features, with 60.91% accuracy in healthy-osteporotic image classification.


Asunto(s)
COVID-19 , Osteoporosis , Humanos , Microtomografía por Rayos X/métodos , Huesos/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador
3.
Mater Des ; 231: 112087, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37323219

RESUMEN

While advanced imaging strategies have improved the diagnosis of bone-related pathologies, early signs of bone alterations remain difficult to detect. The Covid-19 pandemic has brought attention to the need for a better understanding of bone micro-scale toughening and weakening phenomena. This study used an artificial intelligence-based tool to automatically investigate and validate four clinical hypotheses by examining osteocyte lacunae on a large scale with synchrotron image-guided failure assessment. The findings indicate that trabecular bone features exhibit intrinsic variability related to external loading, micro-scale bone characteristics affect fracture initiation and propagation, osteoporosis signs can be detected at the micro-scale through changes in osteocyte lacunar features, and Covid-19 worsens micro-scale porosities in a statistically significant manner similar to the osteoporotic condition. Incorporating these findings with existing clinical and diagnostic tools could prevent micro-scale damages from progressing into critical fractures.

4.
Materials (Basel) ; 16(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36903046

RESUMEN

Currently, the onset of bone damage and the interaction of cracks with the surrounding micro-architecture are still black boxes. With the motivation to address this issue, our research targets isolating lacunar morphological and densitometric effects on crack advancement under both static and cyclic loading conditions by implementing static extended finite element models (XFEM) and fatigue analyses. The effect of lacunar pathological alterations on damage initiation and progression is evaluated; the results indicate that high lacunar density considerably reduces the mechanical strength of the specimens, resulting as the most influencing parameter among the studied ones. Lacunar size has a lower effect on mechanical strength, reducing it by 2%. Additionally, specific lacunar alignments play a key role in deviating the crack path, eventually slowing its progression. This could shed some light on evaluating the effects of lacunar alterations on fracture evolution in the presence of pathologies.

5.
J Mech Behav Biomed Mater ; 137: 105576, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413863

RESUMEN

The growing health and economic burden of bone fractures, their intricate multiscale features and the existing knowledge gaps in the comprehension of micro-scale bone damage occurrence make fracture diagnosis a challenging issue. In this scenario, deep-learning and artificial intelligence embody the new frontier of healthcare system, by overcoming the subjectivity of clinicians in the analysis of medical images. However, the preliminary attempts in exploiting the power of machine learning algorithms such as neural networks are still limited to bone macro-scale, while there is an evident lack in their application to smaller scales, where damage starts nucleating. Currently, speculations at the micro-scale are only feasible with the aid of high-resolution imaging techniques, that are particularly time consuming in terms of output images analysis. In this context, this works aims at combining the visualization of the micro-crack propagation mechanism with the promising application of convolutional neural networks. The implemented artificial intelligence tool is based for the first time on a large number of human synchrotron images coming from healthy and osteoporotic femoral heads tested under micro-compression. The designed convolutional neural networks are able to automatically detect lacunae and micro-cracks at different compression levels with high accuracy levels; indeed, with the baseline setup, networks achieve more than 0.99 level of accuracy for both cracks and lacunae, and more than 0.87 of the meanIoU adopted as validation metric. This approach is particularly encouraging for the development of powerful recognition system to comprehend bone micro-damage initiation and propagation, paving the way to the application of machine learning studies to bone micromechanics. This could be additionally crucial for future patient specific micro-scale observations to be related to the clinical practice.


Asunto(s)
Inteligencia Artificial , Sincrotrones , Humanos , Redes Neurales de la Computación , Aprendizaje Automático , Algoritmos
6.
Materials (Basel) ; 15(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35407787

RESUMEN

From the mechanical function of grabbing objects to the emotional aspect of gesturing, the functionality of human hands is fundamental for both physical and social survival. Therefore, the loss of one or both hands represents a devastating issue, exacerbated by long rehabilitation times and psychological treatments. Prosthetic arms represent an effective solution to provide concrete functional and esthetical support. However, commercial hand prostheses still lack an optimal combination of light weight, durability, adequate cosmetic appearance, and affordability. Among these aspects, the priority for upper-limb prosthesis users is weight, a key parameter that influences both the portability and the functionality of the system. The purpose of this work is to optimize the design of the MyHand prosthesis, by redesigning both the proximal and distal finger and thumb in light of finding an optimal balance between weight reduction and adequate stiffness. Starting from elastic-plastic numerical models and experimental tests on obsolete components, analyzed under the worst loading condition, five different design solutions are suggested. An iterative topology optimization process locates the regions where material removal is permitted. From these results, 2 mm geometrical patterns on the top surface of the hand prosthesis appear as the most prominent, preventing object intrusion.

7.
Materials (Basel) ; 14(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576592

RESUMEN

The complexity of torsional load, its three-dimensional nature, its combination with other stresses, and its disruptive impact make torsional failure prevention an ambitious goal. However, even if the problem has been addressed for decades, a deep and organized treatment is still lacking in the actual research landscape. For this reason, this review aims at presenting a methodical approach to address torsional issues starting from a punctual problem definition. Accidents and breaks due to torsion, which often occur in different engineering fields such as mechanical, biomedical, and civil industry are considered and critically compared. More in depth, the limitations of common-designed torsion-resistant structures (i.e., high complexity and increased weight) are highlighted, and emerge as a crucial point for a deeper nature-driven analysis of novel solutions. In this context, an accurate screening of torsion-resistant bio-inspired unit cells is presented, taking inspiration specifically from plants, that are often subjected to the torsional effect of winds. As future insights, the actual state of technology suggests an innovative transposition to the industry: these unit cells could be prominently implied to develop novel metamaterials that could be able to address the torsional issue with a multi-scale and tailored arrangement.

8.
Med Biol Eng Comput ; 59(10): 2139-2152, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34471983

RESUMEN

The comprehension of trabecular bone damage processes could be a crucial hint for understanding how bone damage starts and propagates. Currently, different approaches to bone damage identification could be followed. Clinical approaches start from dual X-ray absorptiometry (DXA) technique that can evaluate bone mineral density (BMD), an indirect indicator of fracture risk. DXA is, in fact, a two-dimensional technology, and BMD alone is not able to predict the effective risk of fractures. First attempts in overcoming this issue have been performed with finite element (FE) methods, combined with the use of three-dimensional high-resolution micro-computed tomographic images. The purpose of this work is to evaluate damage initiation and propagation in trabecular vertebral porcine samples using 2D linear-elastic FE models from DXA images and 3D linear FE models from micro-CT images. Results show that computed values of strains with 2D and 3D approaches (e.g., the minimum principal strain) are of the same order of magnitude. 2D DXA-based models still remain a powerful tool for a preliminary screening of trabecular regions that are prone to fracture, while from 3D micro-CT-based models, it is possible to reach details that permit the localization of the most strained trabecula.


Asunto(s)
Hueso Esponjoso , Fracturas Óseas , Absorciometría de Fotón , Animales , Densidad Ósea , Hueso Esponjoso/diagnóstico por imagen , Fracturas Óseas/diagnóstico por imagen , Porcinos , Microtomografía por Rayos X
9.
Materials (Basel) ; 14(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34361420

RESUMEN

The solutions provided through natural evolution of living creatures serve as an ingenious source of inspiration for many technological and applicative fields. Along these lines, bone-inspired concepts lead to fascinating advances in product design, architecture and garments, thanks to the bone's exceptional combination of strength, toughness and lightness. Structural applications are inspired by the bone's ability to resist fracture under a large spectrum of forces, while the high surface area and pore connectivity of bone architecture present exciting opportunities from an aesthetic point of view. Behind these inspirations, a disruptive common belief emerges: "down to the bone", a journey in search of equality, universality and substantiality. Herein, we explore the current state of the art in bone-inspired applications in these fields, considering the two major categories of structural and aesthetic inspirations and discussing further technological developments.

10.
Bone ; 152: 116094, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34186251

RESUMEN

Ultra-high-resolution imaging of the osteocyte lacuno-canalicular network (LCN) three-dimensionally (3D) in a high-throughput fashion has greatly improved the morphological knowledge about the constituent structures - positioning them as potential biomarkers. Technologies such as serial focused ion beam/scanning electron microscopy (FIB/SEM) and confocal scanning laser microscopy (CLSM) can image in extremely high resolution, yet only capture a small number of lacunae. Synchrotron radiation computed tomography (SR-CT) can image with both high resolution and high throughput but has a limited availability. Desktop micro-computed tomography (micro-CT) provides an attractive balance: high-throughput imaging on the micron level without the restrictions of SR-CT availability. In this study, accuracy, reproducibility, and sensitivity of large-scale quantification of human osteocyte lacunar morphometries were assessed by ultra-high-resolution desktop micro-computed tomography. For this purpose, thirty-one transiliac human bone biopsies containing trabecular and cortical regions were imaged using ultra-high-resolution desktop micro-CT at a nominal isotropic voxel resolution of 1.2 µm. The resulting 3D images were segmented, component labeled, and the following morphometric parameters of 7.71 million lacunae were measured: Lacunar number (Lc.N), density (Lc.N/BV), porosity (Lc.TV/BV), volume (Lc.V), surface area (Lc.S), surface area to volume ratio (Lc.S/Lc.V), stretch (Lc.St), oblateness (Lc.Ob), sphericity (Lc.Sr), equancy (Lc.Eq), and angle (Lc.θ). Accuracy was quantified by comparing automated lacunar identification to manual identification. Mean true positive rate (TPR), false positive rate (FPR), and false negative rate (FNR) were 89.0%, 3.4%, and 11.0%, respectively. Regarding the reproducibility of lacunar morphometry from repeated measurements, precision errors were low (0.2-3.0%) and intraclass correlation coefficients were high (0.960-0.999). Significant differences between cortical and trabecular regions (p<0.001) existed for Lc.N/BV, Lc.TV/BV, local lacunar surface area (), and local lacunar volume (), all of which demonstrate the sensitivity of the method and are possible biomarker candidates. This study provides the foundation required for future large-scale morphometric studies using ultra-high-resolution desktop micro-CT and high-throughput analysis of millions of osteocyte lacunae in human bone samples.


Asunto(s)
Huesos , Osteocitos , Biomarcadores , Humanos , Reproducibilidad de los Resultados , Microtomografía por Rayos X
11.
Materials (Basel) ; 14(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807961

RESUMEN

The investigation of bone damage processes is a crucial point to understand the mechanisms of age-related bone fractures. In order to reduce their impact, early diagnosis is key. The intricate architecture of bone and the complexity of multiscale damage processes make fracture prediction an ambitious goal. This review, supported by a detailed analysis of bone damage physical principles, aims at presenting a critical overview of how multiscale imaging techniques could be used to implement reliable and validated numerical tools for the study and prediction of bone fractures. While macro- and meso-scale imaging find applications in clinical practice, micro- and nano-scale imaging are commonly used only for research purposes, with the objective to extract fragility indexes. Those images are used as a source for multiscale computational damage models. As an example, micro-computed tomography (micro-CT) images in combination with micro-finite element models could shed some light on the comprehension of the interaction between micro-cracks and micro-scale bone features. As future insights, the actual state of technology suggests that these models could be a potential substitute for invasive clinical practice for the prediction of age-related bone fractures. However, the translation to clinical practice requires experimental validation, which is still in progress.

12.
J Tissue Eng Regen Med ; 14(2): 369-387, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31825164

RESUMEN

The complexity of mammary tissue and the variety of cells involved make tissue regeneration an ambitious goal. This review, supported by both detailed macro and micro anatomy, illustrates the potential of regenerative medicine in terms of mammary gland reconstruction to restore breast physiology and morphology, damaged by mastectomy. Despite the widespread use of conventional therapies, many critical issues have been solved using the potential of stem cells resident in adipose tissue, leading to commercial products. in vitro research has reported that adipose stem cells are the principal cellular source for reconstructing adipose tissue, ductal epithelium, and nipple structures. In addition to simple cell injection, construct made by cells seeded on a suitable biodegradable scaffold is a viable alternative from a long-term perspective. Preclinical studies on mice and clinical studies, most of which have reached Phase II, are essential in the commercialization of cellular therapy products. Recent studies have revealed that the enrichment of fat grafting with stromal vascular fraction cells is a viable alternative to breast reconstruction. Although in the future, organ-on-a-chip can be envisioned, for the moment researchers are still focusing on therapies that are a long way from regenerating the whole organ, but which nevertheless prevent complications, such as relapse and loss in terms of morphology.


Asunto(s)
Neoplasias de la Mama/cirugía , Mama/cirugía , Mastectomía/métodos , Procedimientos de Cirugía Plástica/métodos , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Adipocitos/citología , Tejido Adiposo/citología , Animales , Diferenciación Celular , Línea Celular Tumoral , Femenino , Homeostasis , Humanos , Técnicas In Vitro , Ratones , Trasplante de Neoplasias , Regeneración , Células Madre/citología , Células del Estroma/trasplante , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...