Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575601

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Neurodegenerative Diseases , Parkinson Disease , Synucleinopathies , Animals , Humans , Mice , Rats , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
2.
J Neurosci ; 42(50): 9473-9487, 2022 12 14.
Article En | MEDLINE | ID: mdl-36414406

Cortical synucleinopathies, including dementia with Lewy bodies and Parkinson's disease dementia, collectively known as Lewy body dementia, are characterized by the aberrant aggregation of misfolded α-synuclein (α-syn) protein into large inclusions in cortical tissue, leading to impairments in proteostasis and synaptic connectivity and eventually resulting in neurodegeneration. Here, we show that male and female rat cortical neurons exposed to exogenous α-syn preformed fibrils accumulate large, detergent-insoluble, PS129-labeled deposits at synaptic terminals. Live-cell imaging of calcium dynamics coupled with assessment of network activity reveals that aberrant intracellular accumulation of α-syn inhibits synaptic response to glutamate through NMDARs, although deficits manifest slowly over a 7 d period. Impairments in NMDAR activity temporally correlated with increased nitric oxide synthesis and S-nitrosylation of the dendritic scaffold protein, microtubule-associated protein 1A. Inhibition of nitric oxide synthesis via the nitric oxide synthase inhibitor l-NG-nitroarginine methyl ester blocked microtubule-associated protein 1A S-nitrosylation and normalized NMDAR-dependent inward calcium transients and overall network activity. Collectively, these data suggest that loss of synaptic function in Lewy body dementia may result from synucleinopathy-evoked nitrosative stress and subsequent NMDAR dysfunction.SIGNIFICANCE STATEMENT This work shows the importance of the redox state of microtubule-associated protein 1A in the maintenance of synaptic function through regulation of NMDAR. We show that α-syn preformed fibrils promote nitric oxide synthesis, which triggers S-nitrosylation of microtubule-associated protein 1A, leading to impairment of NMDAR-dependent glutamate responses. This offers insight into the mechanism of synaptic dysfunction in Lewy body dementia.


Dementia , Lewy Body Disease , Parkinson Disease , Synucleinopathies , Male , Female , Animals , Rats , alpha-Synuclein/metabolism , Lewy Body Disease/metabolism , Calcium/metabolism , Nitric Oxide/metabolism , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Receptors, N-Methyl-D-Aspartate , Glutamates , Microtubule-Associated Proteins/metabolism
3.
Cell Rep ; 35(6): 109099, 2021 05 11.
Article En | MEDLINE | ID: mdl-33979611

Neuronal loss in Parkinson's disease (PD) is associated with impaired proteostasis and accumulation of α-syn microaggregates in dopaminergic neurons. These microaggregates promote seeding of α-synuclein (α-syn) pathology between synaptically linked neurons. However, the mechanism by which seeding is initiated is not clear. Using human pluripotent stem cell (hPSC) models of PD that allow comparison of SNCA mutant cells with isogenic controls, we find that SNCA mutant neurons accumulate α-syn deposits that cluster to multiple endomembrane compartments, specifically multivesicular bodies (MVBs) and lysosomes. We demonstrate that A53T and E46K α-syn variants bind and sequester LC3B monomers into detergent-insoluble microaggregates on the surface of late endosomes, increasing α-syn excretion via exosomes and promoting seeding of α-syn from SNCA mutant neurons to wild-type (WT) isogenic controls. Finally, we show that constitutive inactivation of LC3B promotes α-syn accumulation and seeding, while LC3B activation inhibits these events, offering mechanistic insight into the spread of synucleinopathy in PD.


Exocytosis/genetics , Exosomes/metabolism , Parkinson Disease/genetics , alpha-Synuclein/metabolism , Cell Differentiation , Humans , Mutation , Parkinson Disease/pathology , Transfection
4.
Mol Biol Cell ; 32(7): 511-520, 2021 04 01.
Article En | MEDLINE | ID: mdl-33502893

Evidence suggests that n-3 polyunsaturated fatty acids may act as activators of the Nrf2 antioxidant pathway. The antioxidant response, in turn, promotes neuronal differentiation and neurite outgrowth. Nrf2 has recently been suggested to be a cell intrinsic mediator of docosohexanoic acid (DHA) signaling. In the current study, we assessed whether DHA-mediated axodendritic development was dependent on activation of the Nrf2 pathway and whether Nrf2 protected from agrochemical-induced neuritic retraction. Expression profiling of the DHA-enriched Fat-1 mouse brain relative to wild type showed a significant enrichment of genes associated with neuronal development and neuronal projection and genes associated with the Nrf2-transcriptional pathway. Moreover, we found that primary cortical neurons treated with DHA showed a dose-dependent increase in Nrf2 transcriptional activity and Nrf2-target gene expression. DHA-mediated activation of Nrf2 promoted neurite outgrowth and inhibited oxidative stress-induced neuritic retraction evoked by exposure to agrochemicals. Finally, we provide evidence that this effect is largely dependent on induction of the Nrf2-target gene NAD(P)H: (quinone acceptor) oxidoreductase 1 (NQO1), and that silencing of either Nrf2 or Nqo1 blocks the effects of DHA on the axodendritic compartment. Collectively, these data support a role for the Nrf2-NQO1 pathway in DHA-mediated axodendritic development and protection from agrochemical exposure.


NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/metabolism , Neuronal Outgrowth/physiology , Animals , Antioxidants/pharmacology , Cell Line, Tumor , Dendrites/metabolism , Docosahexaenoic Acids/pharmacology , Humans , Mice , NF-E2-Related Factor 2/genetics , Neuronal Outgrowth/genetics , Neurons/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Signal Transduction/drug effects , Transcription, Genetic/drug effects
...