Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 10: 1249528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116378

RESUMEN

Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact directly with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcases CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.

2.
Annu Rev Chem Biomol Eng ; 14: 265-281, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37289561

RESUMEN

Oxidative stress is an important and pervasive physical stress encountered by all kingdoms of life, including bacteria. In this review, we briefly describe the nature of oxidative stress, highlight well-characterized protein-based sensors (transcription factors) of reactive oxygen species that serve as standards for molecular sensors in oxidative stress, and describe molecular studies that have explored the potential of direct RNA sensitivity to oxidative stress. Finally, we describe the gaps in knowledge of RNA sensors-particularly regarding the chemical modification of RNA nucleobases. RNA sensors are poised to emerge as an essential layer of understanding and regulating dynamic biological pathways in oxidative stress responses in bacteria and, thus, also represent an important frontier of synthetic biology.


Asunto(s)
Bacterias , Estrés Oxidativo , Oxidación-Reducción , Bacterias/genética , Bacterias/metabolismo , Factores de Transcripción/metabolismo , ARN/metabolismo
3.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034808

RESUMEN

Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcase CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA