Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Cancer Discov ; 13(11): 2432-2447, 2023 11 01.
Article En | MEDLINE | ID: mdl-37623743

Phosphoinositide 3-kinase α (PIK3CA) is one of the most mutated genes across cancers, especially breast, gynecologic, and head and neck squamous cell carcinoma tumors. Mutations occur throughout the gene, but hotspot mutations in the helical and kinase domains predominate. The therapeutic benefit of isoform-selective PI3Kα inhibition was established with alpelisib, which displays equipotent activity against the wild-type and mutant enzyme. Inhibition of wild-type PI3Kα is associated with severe hyperglycemia and rash, which limits alpelisib use and suggests that selectively targeting mutant PI3Kα could reduce toxicity and improve efficacy. Here we describe STX-478, an allosteric PI3Kα inhibitor that selectively targets prevalent PI3Kα helical- and kinase-domain mutant tumors. STX-478 demonstrated robust efficacy in human tumor xenografts without causing the metabolic dysfunction observed with alpelisib. Combining STX-478 with fulvestrant and/or cyclin-dependent kinase 4/6 inhibitors was well tolerated and provided robust and durable tumor regression in ER+HER2- xenograft tumor models. SIGNIFICANCE: These preclinical data demonstrate that the mutant-selective, allosteric PI3Kα inhibitor STX-478 provides robust efficacy while avoiding the metabolic dysfunction associated with the nonselective inhibitor alpelisib. Our results support the ongoing clinical evaluation of STX-478 in PI3Kα-mutated cancers, which is expected to expand the therapeutic window and mitigate counterregulatory insulin release. See related commentary by Kearney and Vasan, p. 2313. This article is featured in Selected Articles from This Issue, p. 2293.


Breast Neoplasms , Neoplasms , Humans , Female , Heterografts , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics
2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article En | MEDLINE | ID: mdl-36982778

Myeloperoxidase (MPO) is a highly oxidative, pro-inflammatory enzyme involved in post-myocardial infarction (MI) injury and is a potential therapeutic target. While multiple MPO inhibitors have been developed, the lack of an imaging reporter to select appropriate patients and assess therapeutic efficacy has hampered clinical development. Thus, a translational imaging method to detect MPO activity non-invasively would help to better understand the role MPO plays in MI and facilitate novel therapy development and clinical validation. Interestingly, many MPO inhibitors affect both intracellular and extracellular MPO, but previous MPO imaging methods can only report extracellular MPO activity. In this study, we found that an MPO-specific PET imaging agent (18F-MAPP) can cross cell membranes to report intracellular MPO activity. We showed that 18F-MAPP can track the treatment effect of an MPO inhibitor (PF-2999) at different doses in experimental MI. The imaging results were corroborated by ex vivo autoradiography and gamma counting data. Furthermore, extracellular and intracellular MPO activity assays revealed that 18F-MAPP imaging can report the changes induced by PF-2999 on both intracellular and extracellular MPO activities. These findings support 18F-MAPP as a translational candidate to noninvasively report MPO activity and accelerate drug development against MPO and other related inflammatory targets.


Myocardial Infarction , Peroxidase , Humans , Peroxidase/metabolism , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Positron-Emission Tomography
3.
Nat Commun ; 11(1): 163, 2020 01 09.
Article En | MEDLINE | ID: mdl-31919418

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.


Atrial Fibrillation/genetics , Cardiomyopathies/genetics , Coronary Artery Disease/genetics , Heart Failure/genetics , Heart Failure/pathology , Ventricular Function, Left/genetics , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Cardiomyopathies/pathology , Carrier Proteins/genetics , Case-Control Studies , Cyclin-Dependent Kinase Inhibitor p21/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Microfilament Proteins/genetics , Muscle Proteins/genetics , Risk Factors
4.
Heart ; 106(5): 342-349, 2020 03.
Article En | MEDLINE | ID: mdl-31911501

OBJECTIVE: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome. We aimed to derive HFpEF phenotype-based groups ('phenogroups') based on clinical and echocardiogram data using machine learning, and to compare clinical characteristics, proteomics and outcomes across the phenogroups. METHODS: We applied model-based clustering to 32 echocardiogram and 11 clinical and laboratory variables collected in stable condition from 320 HFpEF outpatients in the Karolinska-Rennes cohort study (56% female, median 78 years (IQR: 71-83)). Baseline proteomics and the composite end point of all-cause mortality or heart failure (HF) hospitalisation were used in secondary analyses. RESULTS: We identified six phenogroups, for which significant differences in the prevalence of concomitant atrial fibrillation (AF), anaemia and kidney disease were observed (p<0.05). Fifteen out of 86 plasma proteins differed between phenogroups (false discovery rate, FDR<0.05), including biomarkers of HF, AF and kidney function. The composite end point was significantly different between phenogroups (log-rank p<0.001), at short-term (100 days), mid-term (18 months) and longer-term follow-up (1000 days). Phenogroup 2 was older, with poorer diastolic and right ventricular function and higher burden of risk factors as AF (85%), hypertension (83%) and chronic obstructive pulmonary disease (30%). In this group a third experienced the primary outcome to 100 days, and two-thirds to 18 months (HR (95% CI) versus phenogroups 1, 3, 4, 5, 6: 1.5 (0.8-2.9); 5.7 (2.6-12.8); 2.9 (1.5-5.6); 2.7 (1.6-4.6); 2.1 (1.2-3.9)). CONCLUSIONS: Using machine learning we identified distinct HFpEF phenogroups with differential characteristics and outcomes, as well as differential levels of inflammatory and cardiovascular proteins.


Heart Failure/classification , Heart Failure/physiopathology , Stroke Volume , Aged , Aged, 80 and over , Cohort Studies , Echocardiography , Female , Heart Failure/diagnostic imaging , Heart Failure/genetics , Humans , Machine Learning , Male , Phenotype
5.
Proc Natl Acad Sci U S A ; 116(24): 11966-11971, 2019 06 11.
Article En | MEDLINE | ID: mdl-31123149

Myeloperoxidase (MPO) is a critical proinflammatory enzyme implicated in cardiovascular, neurological, and rheumatological diseases. Emerging therapies targeting inflammation have raised interest in tracking MPO activity in patients. We describe 18F-MAPP, an activatable MPO activity radioprobe for positron emission tomography (PET) imaging. The activated radioprobe binds to proteins and accumulates at sites of MPO activity. The radioprobe 18F-MAPP has a short blood half-life, remains stable in plasma, does not demonstrate cytotoxicity, and crosses the intact blood-brain barrier. The 18F-MAPP imaging detected sites of elevated MPO activity in living mice embedded with human MPO and in mice induced with chemical inflammation or myocardial infarction. The 18F-MAPP PET imaging noninvasively differentiated varying amounts of MPO activity, competitive inhibition, and MPO deficiency in living animals, confirming specificity and showing that the radioprobe can quantify changes in in vivo MPO activity. The radiosynthesis has been optimized and automated, an important step in translation. These data indicate that 18F-MAPP is a promising translational candidate to noninvasively monitor MPO activity and inflammation in patients.


Peroxidase/metabolism , Animals , Female , Fluorine Radioisotopes/metabolism , Humans , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Positron-Emission Tomography/methods
6.
PLoS One ; 14(3): e0214150, 2019.
Article En | MEDLINE | ID: mdl-30889221

Myeloperoxidase (MPO) is a highly abundant protein within the neutrophil that is associated with lipoprotein oxidation, and increased plasma MPO levels are correlated with poor prognosis after myocardial infarct. Thus, MPO inhibitors have been developed for the treatment of heart failure and acute coronary syndrome in humans. 2-(6-(5-Chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide PF-06282999 is a recently described selective small molecule mechanism-based inactivator of MPO. Here, utilizing PF-06282999, we investigated the role of MPO to regulate atherosclerotic lesion formation and composition in the Ldlr-/- mouse model of atherosclerosis. Though MPO inhibition did not affect lesion area in Ldlr-/- mice fed a Western diet, reduced necrotic core area was observed in aortic root sections after MPO inhibitor treatment. MPO inhibition did not alter macrophage content in and leukocyte homing to atherosclerotic plaques. To assess non-invasive monitoring of plaque inflammation, [18F]-Fluoro-deoxy-glucose (FDG) was administered to Ldlr-/- mice with established atherosclerosis that had been treated with clinically relevant doses of PF-06282999, and reduced FDG signal was observed in animals treated with a dose of PF-06282999 that corresponded with reduced necrotic core area. These data suggest that MPO inhibition does not alter atherosclerotic plaque area or leukocyte homing, but rather alters the inflammatory tone of atherosclerotic lesions; thus, MPO inhibition could have utility to promote atherosclerotic lesion stabilization and prevent atherosclerotic plaque rupture.


Acetamides/pharmacology , Atherosclerosis/drug therapy , Macrophages/enzymology , Peroxidase/antagonists & inhibitors , Plaque, Atherosclerotic/drug therapy , Pyrimidinones/pharmacology , Animals , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Macrophages/pathology , Mice , Mice, Knockout , Peroxidase/genetics , Peroxidase/metabolism , Plaque, Atherosclerotic/enzymology , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Receptors, LDL/deficiency , Receptors, LDL/metabolism
7.
J Med Chem ; 61(7): 3114-3125, 2018 04 12.
Article En | MEDLINE | ID: mdl-29570292

Studies have linked the serine-threonine kinase MAP4K4 to the regulation of a number of biological processes and/or diseases, including diabetes, cancer, inflammation, and angiogenesis. With a majority of the members of our lead series (e.g., 1) suffering from time-dependent inhibition (TDI) of CYP3A4, we sought design avenues that would eliminate this risk. One such approach arose from the observation that carboxylic acid-based intermediates employed in our discovery efforts retained high MAP4K4 inhibitory potency and were devoid of the TDI risk. The medicinal chemistry effort that led to the discovery of this central nervous system-impaired inhibitor together with its preclinical safety profile is described.


Aminopyridines/chemical synthesis , Aminopyridines/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Aminopyridines/adverse effects , Animals , Biological Availability , Carboxylic Acids/chemistry , Cytochrome P-450 CYP3A Inhibitors/chemical synthesis , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Discovery , Half-Life , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Conformation , Protein Kinase Inhibitors/adverse effects , Rats , Rats, Wistar , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/blood
8.
Drug Metab Dispos ; 45(5): 501-511, 2017 05.
Article En | MEDLINE | ID: mdl-28254951

The propensity for CYP3A4 induction by 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999), an irreversible inactivator of myeloperoxidase, was examined in the present study. Studies using human hepatocytes revealed moderate increases in CYP3A4 mRNA and midazolam-1'-hydroxylase activity in a PF-06282999 dose-dependent fashion. At the highest tested concentration of 300 µM, PF-06282999 caused maximal induction in CYP3A4 mRNA and enzyme activity ranging from 56% to 86% and 47% t0 72%, respectively, of rifampicin response across the three hepatocyte donor pools. In a clinical drug-drug interaction (DDI) study, the mean midazolam Cmax and area under the curve (AUC) values following 14-day treatment with PF-06282999 decreased in a dose-dependent fashion with a maximum decrease in midazolam AUC0-inf and Cmax of ∼57.2% and 41.1% observed at the 500 mg twice daily dose. The moderate impact on midazolam pharmacokinetics at the 500 mg twice daily dose of PF-06282999 was also reflected in statistically significant changes in plasma 4ß-hydroxycholesterol/cholesterol and urinary 6ß-hydroxycortisol/cortisol ratios. Changes in plasma and urinary CYP3A4 biomarkers did not reach statistical significance at the 125 mg three times daily dose of PF-06282999, despite a modest decrease in midazolam systemic exposure. Predicted DDI magnitude based on the in vitro induction parameters and simulated pharmacokinetics of perpetrator (PF-06282999) and victim (midazolam) using the Simcyp (Simcyp Ltd., Sheffield, United Kingdom) population-based simulator were in reasonable agreement with the observed clinical data. Since the magnitude of the 4ß-hydroxycholesterol or 6ß-hydroxycortisol ratio change was generally smaller than the magnitude of the midazolam AUC change with PF-06282999, a pharmacokinetic interaction study with midazolam ultimately proved important for assessment of DDI via CYP3A4 induction.


Acetamides/pharmacology , Cytochrome P-450 CYP3A/biosynthesis , Enzyme Inhibitors/pharmacology , Pyrimidinones/pharmacology , Acetamides/pharmacokinetics , Adult , Cells, Cultured , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Enzyme Induction/drug effects , Enzyme Inhibitors/pharmacokinetics , Female , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Male , Middle Aged , Peroxidase/antagonists & inhibitors , Pyrimidinones/pharmacokinetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Young Adult
9.
Drug Metab Dispos ; 44(8): 1262-9, 2016 08.
Article En | MEDLINE | ID: mdl-27079250

N1-Substituted-6-arylthiouracils, represented by compound 1 [6-(2,4-dimethoxyphenyl)-1-(2-hydroxyethyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one], are a novel class of selective irreversible inhibitors of human myeloperoxidase. The present account is a summary of our in vitro studies on the facile oxidative desulfurization in compound 1 to a cyclic ether metabolite M1 [5-(2,4-dimethoxyphenyl)-2,3-dihydro-7H-oxazolo[3,2-a]pyrimidin-7-one] in NADPH-supplemented rats (t1/2 [half-life = mean ± S.D.] = 8.6 ± 0.4 minutes) and dog liver microsomes (t1/2 = 11.2 ± 0.4 minutes), but not in human liver microsomes (t1/2 > 120 minutes). The in vitro metabolic instability also manifested in moderate-to-high plasma clearances of the parent compound in rats and dogs with significant concentrations of M1 detected in circulation. Mild heat deactivation of liver microsomes or coincubation with the flavin-containing monooxygenase (FMO) inhibitor imipramine significantly diminished M1 formation. In contrast, oxidative metabolism of compound 1 to M1 was not inhibited by the pan cytochrome P450 inactivator 1-aminobenzotriazole. Incubations with recombinant FMO isoforms (FMO1, FMO3, and FMO5) revealed that FMO1 principally catalyzed the conversion of compound 1 to M1. FMO1 is not expressed in adult human liver, which rationalizes the species difference in oxidative desulfurization. Oxidation by FMO1 followed Michaelis-Menten kinetics with Michaelis-Menten constant, maximum rate of oxidative desulfurization, and intrinsic clearance values of 209 µM, 20.4 nmol/min/mg protein, and 82.7 µl/min/mg protein, respectively. Addition of excess glutathione essentially eliminated the conversion of compound 1 to M1 in NADPH-supplemented rat and dog liver microsomes, which suggests that the initial FMO1-mediated S-oxygenation of compound 1 yields a sulfenic acid intermediate capable of redox cycling to the parent compound in a glutathione-dependent fashion or undergoing further oxidation to a more electrophilic sulfinic acid species that is trapped intramolecularly by the pendant alcohol motif in compound 1.


Enzyme Inhibitors/pharmacokinetics , Liver/enzymology , Oxygenases/metabolism , Peroxidase/antagonists & inhibitors , Thiouracil/pharmacokinetics , Administration, Intravenous , Animals , Biotransformation , Dogs , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/blood , Half-Life , Humans , Male , Metabolic Clearance Rate , Microsomes, Liver/enzymology , Models, Biological , Oxidation-Reduction , Oxygenases/antagonists & inhibitors , Peroxidase/metabolism , Rats, Wistar , Species Specificity , Thiouracil/administration & dosage , Thiouracil/analogs & derivatives , Thiouracil/blood
10.
JACC Basic Transl Sci ; 1(7): 633-643, 2016 Dec.
Article En | MEDLINE | ID: mdl-30167547

PF-1355 is an oral myeloperoxidase (MPO) inhibitor that successfully decreased elevated MPO activity in mouse myocardial infarction models. Short duration PF-1355 treatment for 7 days decreased the number of inflammatory cells and attenuated left ventricular dilation. Cardiac function and remodeling improved when treatment was increased to 21 days. Better therapeutic effect was further achieved with early compared with delayed treatment initiation (1 h vs. 24 h after infarction). In conclusion, PF-1355 treatment protected a mouse heart from acute and chronic effects of MI, and this study paves the way for future translational studies investigating this class of drugs in cardiovascular diseases.

11.
Nat Commun ; 6: 8995, 2015 Dec 21.
Article En | MEDLINE | ID: mdl-26688060

Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe(-/-) mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe(-/-) and Ldlr(-/-) mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis.


Atherosclerosis/metabolism , Endothelial Cells/metabolism , Inflammation/metabolism , Protein Serine-Threonine Kinases/metabolism , Vascular Diseases/metabolism , Aminopyridines/pharmacology , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/genetics , Gene Expression Regulation/physiology , Inflammation/genetics , Macrophages , Male , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Vascular Diseases/genetics , NF-kappaB-Inducing Kinase
12.
ACS Med Chem Lett ; 6(11): 1128-33, 2015 Nov 12.
Article En | MEDLINE | ID: mdl-26617966

Recent studies in adipose tissue, pancreas, muscle, and macrophages suggest that MAP4K4, a serine/threonine protein kinase may be a viable target for antidiabetic drugs. As part of the evaluation of MAP4K4 as a novel antidiabetic target, a tool compound, 16 (PF-6260933) and a lead 17 possessing excellent kinome selectivity and suitable properties were delivered to establish proof of concept in vivo. The medicinal chemistry effort that led to the discovery of these lead compounds is described herein together with in vivo pharmacokinetic properties and activity in a model of insulin resistance.

13.
J Med Chem ; 58(21): 8513-28, 2015 Nov 12.
Article En | MEDLINE | ID: mdl-26509551

Myeloperoxidase (MPO) is a heme peroxidase that catalyzes the production of hypochlorous acid. Clinical evidence suggests a causal role for MPO in various autoimmune and inflammatory disorders including vasculitis and cardiovascular and Parkinson's diseases, implying that MPO inhibitors may represent a therapeutic treatment option. Herein, we present the design, synthesis, and preclinical evaluation of N1-substituted-6-arylthiouracils as potent and selective inhibitors of MPO. Inhibition proceeded in a time-dependent manner by a covalent, irreversible mechanism, which was dependent upon MPO catalysis, consistent with mechanism-based inactivation. N1-Substituted-6-arylthiouracils exhibited low partition ratios and high selectivity for MPO over thyroid peroxidase and cytochrome P450 isoforms. N1-Substituted-6-arylthiouracils also demonstrated inhibition of MPO activity in lipopolysaccharide-stimulated human whole blood. Robust inhibition of plasma MPO activity was demonstrated with the lead compound 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999, 8) upon oral administration to lipopolysaccharide-treated cynomolgus monkeys. On the basis of its pharmacological and pharmacokinetic profile, PF-06282999 has been advanced to first-in-human pharmacokinetic and safety studies.


Acetamides/pharmacology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/enzymology , Enzyme Inhibitors/pharmacology , Peroxidase/antagonists & inhibitors , Pyrimidinones/pharmacology , Acetamides/chemistry , Acetamides/pharmacokinetics , Animals , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Peroxidase/metabolism , Pyrimidinones/chemistry , Pyrimidinones/pharmacokinetics , Rats, Wistar
14.
ACS Chem Biol ; 10(12): 2667-71, 2015 Dec 18.
Article En | MEDLINE | ID: mdl-26422651

Mitogen-activated protein kinase 4 (MAP4K4) regulates the MEK kinase cascade and is implicated in cytoskeletal rearrangement and migration; however, identifying MAP4K4 substrates has remained a challenge. To ascertain MAP4K4-dependent phosphorylation events, we combined phosphoproteomic studies of MAP4K4 inhibition with in vitro assessment of its kinase specificity. We identified 235 phosphosites affected by MAP4K4 inhibition in cells and found that pTP and pSP motifs were predominant among them. In contrast, in vitro assessment of kinase specificity showed that MAP4K4 favors a pTL motif. We showed that MAP4K4 directly phosphorylates and coimmunoprecipitates with FERM, RhoGEF, and pleckstrin domain-containing protein 1 (FARP1). MAP4K4 inhibition in SH-SY5Y cells increases neurite outgrowth, a process known to involve FARP1. As FARP1 and MAP4K4 both contribute to cytoskeletal rearrangement, the results suggest that MAP4K4 exerts some of its effects on the cytoskeleton via phosphorylation of FARP1.


Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Biological Assay , Hep G2 Cells , Humans , Molecular Structure , Phosphorylation , Proteomics
15.
J Pharmacol Exp Ther ; 353(2): 288-98, 2015 May.
Article En | MEDLINE | ID: mdl-25698787

Small vessel vasculitis is a life-threatening condition and patients typically present with renal and pulmonary injury. Disease pathogenesis is associated with neutrophil accumulation, activation, and oxidative damage, the latter being driven in large part by myeloperoxidase (MPO), which generates hypochlorous acid among other oxidants. MPO has been associated with vasculitis, disseminated vascular inflammation typically involving pulmonary and renal microvasculature and often resulting in critical consequences. MPO contributes to vascular injury by 1) catabolizing nitric oxide, impairing vasomotor function; 2) causing oxidative damage to lipoproteins and endothelial cells, leading to atherosclerosis; and 3) stimulating formation of neutrophil extracellular traps, resulting in vessel occlusion and thrombosis. Here we report a selective 2-thiouracil mechanism-based MPO inhibitor (PF-1355 [2-(6-(2,5-dimethoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide) and demonstrate that MPO is a critical mediator of vasculitis in mouse disease models. A pharmacokinetic/pharmacodynamic response model of PF-1355 exposure in relation with MPO activity was derived from mouse peritonitis. The contribution of MPO activity to vasculitis was then examined in an immune complex model of pulmonary disease. Oral administration of PF-1355 reduced plasma MPO activity, vascular edema, neutrophil recruitment, and elevated circulating cytokines. In a model of anti-glomerular basement membrane disease, formerly known as Goodpasture disease, albuminuria and chronic renal dysfunction were completely suppressed by PF-1355 treatment. This study shows that MPO activity is critical in driving immune complex vasculitis and provides confidence in testing the hypothesis that MPO inhibition will provide benefit in treating human vasculitic diseases.


Acetamides/pharmacology , Enzyme Inhibitors/pharmacology , Glomerular Basement Membrane/drug effects , Glomerulonephritis/prevention & control , Immune Complex Diseases/prevention & control , Peroxidase/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrimidinones/pharmacology , Vasculitis/prevention & control , Animals , Glomerular Basement Membrane/pathology , Glomerulonephritis/enzymology , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Humans , Immune Complex Diseases/enzymology , Immune Complex Diseases/immunology , Immune Complex Diseases/pathology , Lung/blood supply , Lung/drug effects , Lung/immunology , Mice , Neutrophil Infiltration/drug effects , Signal Transduction/drug effects , Vasculitis/enzymology , Vasculitis/immunology , Vasculitis/pathology
16.
J Med Chem ; 58(6): 2658-77, 2015 Mar 26.
Article En | MEDLINE | ID: mdl-25706100

A significant improvement in agonist activity of the previously described 2-aryloctahydrophenanthrene-2,3,7-triol series of dissociated glucocorticoid receptor agonists (DAGRs) was achieved by modifying the substitution at C3 from (S)-3-hydroxy to (R)-3-hydroxy-3-methyl. The IC50 of the prototype 13 in the efficacy assay measuring repression of IL-1 induced MMP-13 expression was 3.5 nM, exhibiting 87% of the maximal effect of dexamethasone (DEX). It displayed a dissociated profile by exhibiting 42% of the maximal effect of DEX in a mouse mammary tumor virus (MMTV) luciferase reporter transactivation assay. Compound 13 and analogues containing heterocyclic replacements for the C2 phenyl and modified B rings showed high repression of TNFα production in human whole blood, with IC50 values (43-167 nM) approaching the level of DEX (21 nM). On the basis of X-ray structures and force field calculations, the overall potency of this series was attributed to a favorable conformation of the C2α phenyl, induced by the neighboring C3α methyl.


Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Receptors, Glucocorticoid/agonists , Animals , Anti-Inflammatory Agents/pharmacology , Cell Line , Crystallography, X-Ray , Dexamethasone/pharmacology , Humans , Interleukin-1/immunology , Mammary Tumor Virus, Mouse/genetics , Matrix Metalloproteinase 13/genetics , Mice , Models, Molecular , Receptors, Glucocorticoid/metabolism , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology , Up-Regulation/drug effects
17.
Physiol Rep ; 2(7)2014 Jul 16.
Article En | MEDLINE | ID: mdl-25347863

Stretch of vascular smooth muscle stimulates growth and proliferation as well as contraction and expression of contractile/cytoskeletal proteins, all of which are also regulated by calcium-dependent signals. We studied the role of the calcium- and integrin-activated proline-rich tyrosine kinase 2 (PYK2) in stretch-induced responses of the rat portal vein loaded by a hanging weight ex vivo. PYK2 phosphorylation at Tyr-402 was increased both by a 10-min stretch and by organ culture with load over several days. Protein and DNA synthesis were reduced by the novel PYK2 inhibitor PF-4594755 (0.5-1 µmol/L), while still sensitive to stretch. In 3-day organ culture, PF-4594755 caused maintained myogenic spontaneous activity but did not affect contraction in response to high-K(+) (60 mmol/L) or to α1-adrenergic stimulation by cirazoline. Basal and stretch-induced PYK2 phosphorylation in culture were inhibited by PF-4594755, closely mimicking inhibition of non-voltage-dependent calcium influx by 2-APB (30 µmol/L). In contrast, the L-type calcium channel blocker, nifedipine (1 µmol/L) eliminated stretch-induced but not basal PYK2 phosphorylation. Stretch-induced Akt and ERK1/2 phosphorylation was eliminated by PF-4594755. PYK2 inhibition had no effect on mRNA expression of several smooth muscle markers, and stretch-sensitive SM22α synthesis was preserved. Culture of portal vein with the Ang II inhibitor losartan (1 µmol/L) eliminated stretch sensitivity of PYK2 and Akt phosphorylation, but did not affect mRNA expression of smooth muscle markers. The results suggest that PYK2 signaling functionally distinguishes effects of voltage- and non-voltage-dependent calcium influx. A small-molecule inhibitor of PYK2 reduces growth and DNA synthesis but does not affect contractile differentiation of vascular smooth muscle.

18.
Toxicol Pathol ; 42(6): 970-83, 2014 Aug.
Article En | MEDLINE | ID: mdl-24067673

Thionamides such as propylthiouracil (PTU) and methimazole (MMI) have been used for more than 50 years to treat the more common causes of thyrotoxicosis/hyperthyroidism such as Graves' disease. Serious adverse effects associated with thionamides in humans include idiosyncratic liver damage, agranulocytosis, aplastic anemia, and vasculitis. Both prospective and retrospective clinical studies with these drugs have failed to identify predictive biomarker for these adverse effects. To assess whether rat is a good model for predicting drug-related adverse events in the liver and in the bone marrow, we conducted a comprehensive study in male rats with multiple doses of PTU and MMI. As expected, euthyroid animals became hypothyroid along with several secondary changes associated with hypothyroidism. There were slight reductions in red blood cell parameters along with some marginal effects on the bone marrow elements. However, there was no evidence of significant neutropenia and liver injury in both PTU-treated and MMI-treated cohorts. MMI-related effects were noted in the seminiferous tubules of the testes. Overall, 1-month daily treatment of euthyroid rats with PTU or MMI resulted in hypothyroidism, minor bone marrow effects, and several secondary effects associated with hypothyroidism, but without any evidence of adverse effects reported in humans including liver injury and agranulocytosis.


Methimazole/toxicity , Propylthiouracil/toxicity , Testis/drug effects , Thyroid Gland/drug effects , Animals , Male , Methimazole/administration & dosage , Methimazole/blood , Methimazole/pharmacokinetics , Propylthiouracil/administration & dosage , Propylthiouracil/blood , Propylthiouracil/pharmacokinetics , Rats , Rats, Wistar , Testis/chemistry , Testis/pathology , Thyroid Gland/chemistry , Thyroid Gland/pathology , Toxicity Tests
19.
Bioorg Med Chem Lett ; 22(24): 7523-9, 2012 Dec 15.
Article En | MEDLINE | ID: mdl-23153798

Previous drug discovery efforts identified classical PYK2 kinase inhibitors such as 2 and 3 that possess selectivity for PYK2 over its intra-family isoform FAK. Efforts to identify more kinome-selective chemical matter that stabilize a DFG-out conformation of the enzyme are described herein. Two sub-series of PYK2 inhibitors, an indole carboxamide-urea and a pyrazole-urea have been identified and found to have different binding interactions with the hinge region of PYK2. These leads proved to be more selective than the original classical inhibitors.


Focal Adhesion Kinase 2/antagonists & inhibitors , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Urea/pharmacology , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Focal Adhesion Kinase 2/metabolism , HEK293 Cells , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Rats , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemistry
20.
Cell Immunol ; 275(1-2): 47-54, 2012.
Article En | MEDLINE | ID: mdl-22507871

B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells.


B-Lymphocytes/drug effects , Chemotaxis/drug effects , Focal Adhesion Kinase 2/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , Quinolones/pharmacology , Sulfones/pharmacology , para-Aminobenzoates , 4-Aminobenzoic Acid/pharmacology , Animals , B-Lymphocytes/cytology , B-Lymphocytes/enzymology , Cell Adhesion/drug effects , Cell Line , Chemokine CXCL13/pharmacology , Chemotactic Factors/pharmacology , Enzyme Activation/drug effects , Lysophospholipids/pharmacology , Mice , Mice, Inbred C57BL , Sphingosine/analogs & derivatives , Sphingosine/pharmacology
...