Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Immunology ; 13(3): e1501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525380

RESUMEN

Objectives: Immunotherapies targeting natural killer (NK) cell receptors have shown promise against leukaemia. Unfortunately, cancer immunosuppressive mechanisms that alter NK cell phenotype prevent such approaches from being successful. The study utilises advanced cytometry to examine how cancer immunosuppressive pathways affect NK cell phenotypic changes in clinical samples. Methods: In this study, we conducted a high-dimensional examination of the cell surface expression of 16 NK cell receptors in paediatric patients with acute myeloid leukaemia and acute lymphoblastic leukaemia, as well as in samples of non-age matched adult peripheral blood (APB) and umbilical cord blood (UCB). An unsupervised analysis was carried out in order to identify NK cell populations present in paediatric leukaemias. Results: We observed that leukaemia NK cells clustered together with UCB NK cells and expressed relatively higher levels of the NKG2A receptor compared to APB NK cells. In addition, CD56dimCD16+CD57- NK cells lacking NKG2A expression were mainly absent in paediatric leukaemia patients. However, CD56br NK cell populations expressing high levels of NKG2A were highly represented in paediatric leukaemia patients. NKG2A expression on leukaemia NK cells was found to be positively correlated with the expression of its ligand, suggesting that the NKG2A-HLA-E interaction may play a role in modifying NK cell responses to leukaemia cells. Conclusion: We provide an in-depth analysis of NK cell populations in paediatric leukaemia patients. These results support the development of immunotherapies targeting immunosuppressive receptors, such as NKG2A, to enhance innate immunity against paediatric leukaemia.

2.
Eur J Immunol ; 53(6): e2250118, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37025016

RESUMEN

Growing interest surrounds adoptive cellular therapies utilizing Natural Killer (NK) cells, which can be obtained from various sources, including umbilical cord blood (UCB) and adult peripheral blood (APB). Understanding NK cell receptor expression and diversity in such cellular sources will guide future therapeutic designs. We used a 20-color flow cytometry panel to compare unstimulated and cytokine-activated UCB and APB NK cells. Our analysis showed that UCB NK cells express slightly higher levels of the immune checkpoints PD-1, TIGIT, and CD96 compared to their APB counterparts. Unsupervised hierarchical clustering and dimensionality reduction analyses revealed enrichment in CD56neg as well as mature NKp46neg and CD56+ CD16+ NK cell populations in UCB whereas CD57+ terminally differentiated NK cells with variable expression of KIRs and CD16 were found in APB. These populations were conserved following stimulation with IL-12, IL-15, and IL-18. Cytokine stimulation was associated with the downregulation of TIGIT and CD16 on multiple NK cell subsets in UCB and APB. Among UCB CD16- NK cell populations, TIGIT+ NK cells produced more IFN-γ than their TIGIT- counterparts. Our data demonstrate higher immune checkpoint expression on UCB NK cells compared to APB. However, the expression of TIGIT immune checkpoint is not indicative of NK cell exhaustion.


Asunto(s)
Sangre Fetal , Células Asesinas Naturales , Adulto , Humanos , Citocinas , Interleucina-12 , Citometría de Flujo , Antígeno CD56
3.
Cells ; 11(21)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36359899

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease in which the ß-cells of the pancreas are attacked by the host's immune system, ultimately resulting in hyperglycemia. It is a complex multifactorial disease postulated to result from a combination of genetic and environmental factors. In parallel with increasing prevalence of T1D in genetically stable populations, highlighting an environmental component, consumption of advanced glycation end products (AGEs) commonly found in in Western diets has increased significantly over the past decades. AGEs can bind to cell surface receptors including the receptor for advanced glycation end products (RAGE). RAGE has proinflammatory roles including in host-pathogen defense, thereby influencing immune cell behavior and can activate and cause proliferation of immune cells such as islet infiltrating CD8+ and CD4+ T cells and suppress the activity of T regulatory cells, contributing to ß-cell injury and hyperglycemia. Insights from studies of individuals at risk of T1D have demonstrated that progression to symptomatic onset and diagnosis can vary, ranging from months to years, providing a window of opportunity for prevention strategies. Interaction between AGEs and RAGE is believed to be a major environmental risk factor for T1D and targeting the AGE-RAGE axis may act as a potential therapeutic strategy for T1D prevention.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hiperglucemia , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Inflamación/complicaciones , Hiperglucemia/complicaciones
4.
Immunol Cell Biol ; 100(1): 33-48, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668580

RESUMEN

The autoimmune disease type 1 diabetes is predominantly mediated by CD8+ cytotoxic T-cell destruction of islet beta cells, of which islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214 is a dominant target antigen specificity. Previously, we found that a liposome-based antigen-specific immunotherapy encapsulating the CD4+ T-cell islet epitope 2.5mim together with the nuclear factor-κB inhibitor calcitriol induced regulatory T cells and protected from diabetes in NOD mice. Here we investigated whether the same system delivering IGRP206-214 could induce antigen-specific CD8+ T-cell-targeted immune regulation and delay diabetes. Subcutaneous administration of IGRP206-214 /calcitriol liposomes transiently activated and expanded IGRP-specific T-cell receptor transgenic 8.3 CD8+ T cells. Liposomal co-delivery of calcitriol was required to optimally suppress endogenous IGRP-specific CD8+ T-cell interferon-γ production and cytotoxicity. Concordantly, a short course of IGRP206-214 /calcitriol liposomes delayed diabetes progression and reduced insulitis. However, when IGRP206-214 /calcitriol liposomes were delivered together with 2.5mim /calcitriol liposomes, disease protection was not observed and the regulatory effect of 2.5mim /calcitriol liposomes was abrogated. Thus, tolerogenic liposomes that target either a dominant CD8+ or a CD4+ T-cell islet epitope can delay diabetes progression but combining multiple epitopes does not enhance protection.


Asunto(s)
Diabetes Mellitus Tipo 1 , Animales , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Glucosa-6-Fosfatasa/metabolismo , Tolerancia Inmunológica , Liposomas/metabolismo , Ratones , Ratones Endogámicos NOD , Linfocitos T Reguladores
5.
Cancers (Basel) ; 13(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34503073

RESUMEN

The discovery of immune checkpoints provided a breakthrough for cancer therapy. Immune checkpoints are inhibitory receptors that are up-regulated on chronically stimulated lymphocytes and have been shown to hinder immune responses to cancer. Monoclonal antibodies against the checkpoint molecules PD-1 and CTLA-4 have shown early clinical success against melanoma and are now approved to treat various cancers. Since then, the list of potential candidates for immune checkpoint blockade has dramatically increased. The current paradigm stipulates that immune checkpoint blockade therapy unleashes pre-existing T cell responses. However, there is accumulating evidence that some of these immune checkpoint molecules are also expressed on Natural Killer (NK) cells. In this review, we summarize our latest knowledge about targetable NK cell inhibitory receptors. We discuss the HLA-binding receptors KIRS and NKG2A, receptors binding to nectin and nectin-like molecules including TIGIT, CD96, and CD112R, and immune checkpoints commonly associated with T cells such as PD-1, TIM-3, and LAG-3. We also discuss newly discovered pathways such as IL-1R8 and often overlooked receptors such as CD161 and Siglecs. We detail how these inhibitory receptors might regulate NK cell responses to cancer, and, where relevant, we discuss their implications for therapeutic intervention.

6.
Curr Diab Rep ; 20(12): 70, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33169191

RESUMEN

PURPOSE OF REVIEW: Antigen-specific immunotherapy (ASI) is a long sought-after goal for type 1 diabetes (T1D), with the potential of greater long-term safety than non-specific immunotherapy. We review the most recent advances in identification of target islet epitopes, delivery platforms and the ongoing challenges. RECENT FINDINGS: It is now recognised that human proinsulin contains a hotspot of epitopes targeted in people with T1D. Beta-cell neoantigens are also under investigation as ASI target epitopes. Consideration of the predicted HLA-specificity of the target antigen for subject selection is now being incorporated into trial design. Cell-free ASI approaches delivering antigen with or without additional immunomodulatory agents can induce antigen-specific regulatory T cell responses, including in patients and many novel nanoparticle-based platforms are under development. ASI for T1D is rapidly advancing with a number of modalities currently being trialled in patients and many more under development in preclinical models.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Antígenos , Diabetes Mellitus Tipo 1/terapia , Humanos , Tolerancia Inmunológica , Inmunoterapia
7.
J Immunol ; 204(7): 1787-1797, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32111734

RESUMEN

Ag-specific tolerizing immunotherapy is considered the optimal strategy to control type 1 diabetes, a childhood disease involving autoimmunity toward multiple islet antigenic peptides. To understand whether tolerizing immunotherapy with a single peptide could control diabetes driven by multiple Ags, we coencapsulated the high-affinity CD4+ mimotope (BDC2.5mim) of islet autoantigen chromogranin A (ChgA) with or without calcitriol (1α,25-dihydroxyvitamin D3) into liposomes. After liposome administration, we followed the endogenous ChgA-specific immune response with specific tetramers. Liposome administration s.c., but not i.v., induced ChgA-specific Foxp3+ and Foxp3- PD1+ CD73+ ICOS+ IL-10+ peripheral regulatory T cells in prediabetic mice, and liposome administration at the onset of hyperglycemia significantly delayed diabetes progression. After BDC2.5mim/calcitriol liposome administration, adoptive transfer of CD4+ T cells suppressed the development of diabetes in NOD severe combined immunodeficiency mice receiving diabetogenic splenocytes. After BDC2.5mim/calcitriol liposome treatment and expansion of ChgA-specific peripheral regulatory T cells. IFN-γ production and expansion of islet-specific glucose-6-phosphatase catalytic subunit-related protein-specific CD8+ T cells were also suppressed in pancreatic draining lymph node, demonstrating bystander tolerance at the site of Ag presentation. Thus, liposomes encapsulating the single CD4+ peptide, BDC2.5mim, and calcitriol induce ChgA-specific CD4+ T cells that regulate CD4+ and CD8+ self-antigen specificities and autoimmune diabetes in NOD mice.


Asunto(s)
Autoantígenos/inmunología , Enfermedades Autoinmunes/inmunología , Autoinmunidad/inmunología , Diabetes Mellitus Tipo 1/inmunología , Islotes Pancreáticos/inmunología , Liposomas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Enfermedades Autoinmunes/terapia , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Diabetes Mellitus Tipo 1/terapia , Femenino , Tolerancia Inmunológica/inmunología , Inmunoterapia/métodos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Péptidos/inmunología
8.
Immunol Cell Biol ; 94(5): 509-19, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26763864

RESUMEN

Enhancement of regulatory T cell (Treg cell) frequency and function is the goal of many therapeutic strategies aimed at treating type 1 diabetes (T1D). The interleukin-2 (IL-2) pathway, which has been strongly implicated in T1D susceptibility in both humans and mice, is a master regulator of Treg cell homeostasis and function. We investigated how IL-2 pathway defects impact Treg cells in T1D-susceptible nonobese diabetic (NOD) mice in comparison with protected C57BL/6 and NOD congenic mice. NOD Treg cells were reduced in frequency specifically in the lymph nodes and expressed lower levels of CD25 and CD39/CD73 immunosuppressive molecules. In the spleen and blood, Treg cell frequency was preserved through expansion of CD25(low), effector phenotype Treg cells. Reduced CD25 expression led to decreased IL-2 signaling in NOD Treg cells. In vivo, treatment with IL-2-anti-IL-2 antibody complexes led to effective upregulation of suppressive molecules on NOD Treg cells in the spleen and blood, but had reduced efficacy on lymph node Treg cells. In contrast, NOD CD8(+) and CD4(+) effector T cells were not impaired in their response to IL-2 therapy. We conclude that NOD Treg cells have an impaired responsiveness to IL-2 that reduces their ability to compete for a limited supply of IL-2.


Asunto(s)
Interleucina-2/metabolismo , Linfocitos T Reguladores/inmunología , Alelos , Animales , Antígenos CD/metabolismo , Movimiento Celular , Proliferación Celular , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Haplotipos/genética , Terapia de Inmunosupresión , Ganglios Linfáticos/metabolismo , Recuento de Linfocitos , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Páncreas/patología , Fenotipo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Bazo/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA