Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Bioorg Med Chem Lett ; 29(12): 1522-1531, 2019 06 15.
Article En | MEDLINE | ID: mdl-30981576

Disruption of interleukin-13 (IL-13) signaling with large molecule antibody therapies has shown promise in diseases of allergic inflammation. Given that IL-13 recruits several members of the Janus Kinase family (JAK1, JAK2, and TYK2) to its receptor complex, JAK inhibition may offer an alternate small molecule approach to disrupting IL-13 signaling. Herein we demonstrate that JAK1 is likely the isoform most important to IL-13 signaling. Structure-based design was then used to improve the JAK1 potency of a series of previously reported JAK2 inhibitors. The ability to impede IL-13 signaling was thereby significantly improved, with the best compounds exhibiting single digit nM IC50's in cell-based assays dependent upon IL-13 signaling. Appropriate substitution was further found to influence inhibition of a key off-target, LRRK2. Finally, the most potent compounds were found to be metabolically labile, which makes them ideal scaffolds for further development as topical agents for IL-13 mediated diseases of the lungs and skin (for example asthma and atopic dermatitis, respectively).


Dermatitis, Atopic/genetics , Interleukin-13/metabolism , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Humans , Signal Transduction
...