Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Mol Biol Educ ; 46(5): 445-452, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30204283

RESUMEN

Exposure of organisms to high temperatures and various chemical and physical stressors can cause protein misfolding and aggregation. In turn, this can disrupt the functions of proteins, threatening both development and homeostasis. To overcome this, cells can initiate the highly conserved heat shock (HS) stress response pathway. In eukaryotes, this is a coordinated cellular response, in which the master HS activator, heat shock factor (HSF), is rapidly recruited to the HS protein genes, and triggers the recruitment of additional coactivator proteins that facilitate gene expression. This results in the production of HS proteins that function as nuclear and cytosolic molecular chaperones, to promote refolding of proteins and prevent aggregation and increase protein degradation pathways. Here, we describe a laboratory exercise in which students visualize and quantify Green Fluorescent Protein (GFP)-tagged HSF binding to the HS protein genes in living Drosophila salivary gland nuclei as an output of chemically induced protein misfolding. Students are assigned an array of chemicals, and using the scientific literature, predict impacts of these chemicals on protein folding. Students then test the effects of their chemicals by measuring GFP-tagged HSF binding to the HS genes in salivary glands using confocal microscopy. Designed for junior and senior level students in a cell/molecular biology course, this is a two-part lab, in which student work closely with an instructor to help familiarize them with developing hypotheses supported by scientific literature and testing these hypotheses by quantitating the levels of GFP-HSF binding, using confocal microscopy of living Drosophila cells. © 2018 International Union of Biochemistry and Molecular Biology, 46(5):445-452, 2018.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Factores de Transcripción del Choque Térmico/química , Laboratorios , Biología Molecular/educación , Animales , Sitios de Unión , Drosophila , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Estudiantes
2.
Curr Opin Genet Dev ; 25: 126-30, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24794700

RESUMEN

Over the past twenty years, exciting developments in optical and molecular imaging approaches have allowed researchers to examine with unprecedented resolution the spatial organization of transcription sites in the nucleus. An attractive model that has developed from these studies is that active genes cluster to preformed transcription factories that contain multiple active RNA polymerases and transcription factor proteins required for efficient mRNA biogenesis. However, this model has been extensively debated in part due to the fact transcription factories and their features have only been documented in fixed cells. In this review, we will focus on recent live-cell imaging studies that are changing our understanding of transcription factories.


Asunto(s)
ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Supervivencia Celular , Humanos , Conformación de Ácido Nucleico , ARN/química , ARN/genética , ARN/metabolismo , Factores de Transcripción/metabolismo
3.
Genes Dev ; 28(1): 14-9, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24395245

RESUMEN

The kinetics with which promoter-proximal paused RNA polymerase II (Pol II) undergoes premature termination versus productive elongation is central to understanding underlying mechanisms of metazoan transcription regulation. To assess the fate of Pol II quantitatively, we tracked photoactivatable GFP-tagged Pol II at uninduced Hsp70 on polytene chromosomes and showed that Pol II is stably paused with a half-life of 5 min. Biochemical analysis of short nascent RNA from Hsp70 reveals that this half-life is determined by two comparable rates of productive elongation and premature termination of paused Pol II. Importantly, heat shock dramatically increases elongating Pol II without decreasing termination, indicating that regulation acts at the step of paused Pol II entry to productive elongation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Regiones Promotoras Genéticas/fisiología , ARN Polimerasa II/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas HSP70 de Choque Térmico/genética , Cinética , ARN Polimerasa II/genética , Transgenes
4.
Mol Cell Biol ; 32(17): 3428-37, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22733996

RESUMEN

Fcp1 dephosphorylates the C-terminal domain of the largest subunit of RNA polymerase II (Pol II) to recycle it into a form that can initiate a new round of transcription. Previously, we identified Drosophila Fcp1 as an important factor in optimal Hsp70 mRNA accumulation after heat shock. Here, we examine the role of Fcp1 in transcription of heat shock genes in vivo. We demonstrate that Fcp1 localizes to active sites of transcription including the induced Hsp70 gene. The reduced Hsp70 mRNA accumulation seen by RNA interference (RNAi) depletion of Fcp1 in S2 cells is a result of a loss of Pol II in the coding region of highly transcribed heat shock-induced genes: Hsp70, Hsp26, and Hsp83. Moreover, Fcp1 depletion dramatically increases phosphorylation of the non-chromatin-bound Pol II. Reexpression of either wild-type or catalytically dead versions of Fcp1 demonstrates that both the reduced Pol II levels on heat shock genes and the increased levels of phosphorylated free Pol II are dependent on the catalytic activity of Fcp1. Our results indicate that Fcp1 is required to maintain the pool of initiation-competent unphosphorylated Pol II, and this function is particularly important for the highly transcribed heat shock genes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Fosfoproteínas Fosfatasas/metabolismo , ARN Polimerasa II/metabolismo , Activación Transcripcional , Animales , Línea Celular , Drosophila/genética , Proteínas de Drosophila/genética , Eliminación de Gen , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Fosfoproteínas Fosfatasas/genética , Fosforilación , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Polimerasa II/química , ARN Mensajero/genética
5.
Mol Cell ; 40(6): 965-75, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21172661

RESUMEN

Chromatin immunoprecipitation (ChIP) studies provide snapshots of factors on chromatin in cell populations. Here, we use live-cell imaging to examine at high temporal resolution the recruitment and dynamics of transcription factors to the inducible Hsp70 loci in individual Drosophila salivary gland nuclei. Recruitment of the master regulator, HSF, is first detected within 20 s of gene activation; the timing of its recruitment resolves from RNA polymerase II and P-TEFb, and these factors resolve from Spt6 and Topo I. Remarkably, the recruitment of each factor is highly synchronous between different cells. In addition, fluorescence recovery after photobleaching (FRAP) analyses show that the entry and exit of multiple factors are progressively constrained upon gene activation, suggesting the gradual formation of a transcription compartment. Furthermore, we demonstrate that poly(ADP-ribose) (PAR) polymerase activity is required to maintain the transcription compartment. We propose that PAR polymers locally retain factors in a transcription compartment.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Glándulas Salivales/citología , Factores de Transcripción/metabolismo , Animales , Núcleo Celular/metabolismo , Supervivencia Celular , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Factores de Transcripción del Choque Térmico , Factor B de Elongación Transcripcional Positiva/genética , ARN Polimerasa II/genética , Glándulas Salivales/metabolismo , Factores de Tiempo , Factores de Transcripción/genética
6.
Mol Biol Cell ; 21(22): 3890-901, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20861300

RESUMEN

The retinoblastoma (RB) transcriptional corepressor and related family of pocket proteins play central roles in cell cycle control and development, and the regulatory networks governed by these factors are frequently inactivated during tumorigenesis. During normal growth, these proteins are subject to tight control through at least two mechanisms. First, during cell cycle progression, repressor potential is down-regulated by Cdk-dependent phosphorylation, resulting in repressor dissociation from E2F family transcription factors. Second, RB proteins are subject to proteasome-mediated destruction during development. To better understand the mechanism for RB family protein instability, we characterized Rbf1 turnover in Drosophila and the protein motifs required for its destabilization. We show that specific point mutations in a conserved C-terminal instability element strongly stabilize Rbf1, but strikingly, these mutations also cripple repression activity. Rbf1 is destabilized specifically in actively proliferating tissues of the larva, indicating that controlled degradation of Rbf1 is linked to developmental signals. The positive linkage between Rbf1 activity and its destruction indicates that repressor function is governed in a manner similar to that described by the degron theory of transcriptional activation. Analogous mutations in the mammalian RB family member p107 similarly induce abnormal accumulation, indicating substantial conservation of this regulatory pathway.


Asunto(s)
Proteínas de Drosophila/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Western Blotting , Línea Celular , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factores de Transcripción E2F/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Femenino , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Leupeptinas/farmacología , Masculino , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas/genética , Unión Proteica , Estabilidad Proteica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética
7.
Mol Biol Cell ; 18(4): 1179-86, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17251548

RESUMEN

Similar to their human counterparts, the Drosophila Rbf1 and Rbf2 Retinoblastoma family members control cell cycle and developmentally regulated gene expression. Increasing evidence suggests that Rbf proteins rely on multiprotein complexes to control target gene transcription. We show here that the developmentally regulated COP9 signalosome (CSN) physically interacts with Rbf2 during embryogenesis. Furthermore, the CSN4 subunit of the COP9 signalosome co-occupies Rbf target gene promoters with Rbf1 and Rbf2, suggesting an active role for the COP9 signalosome in transcriptional regulation. The targeted knockdown of individual CSN subunits leads to diminished Rbf1 and Rbf2 levels and to altered cell cycle progression. The proteasome-mediated destruction of Rbf1 and Rbf2 is increased in cells and embryos with diminished COP9 activity, suggesting that the COP9 signalosome protects Rbf proteins during embryogenesis. Previous evidence has linked gene activation to protein turnover via the promoter-associated proteasome. Our findings suggest that Rbf repression may similarly involve the proteasome and the promoter-associated COP9 signalosome, serving to extend Rbf protein lifespan and enable appropriate programs of retinoblastoma gene control during development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Represoras/metabolismo , Animales , Complejo del Señalosoma COP9 , Ciclo Celular , Drosophila/embriología , Proteínas de Drosophila/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína , Proteínas Represoras/genética , Proteína de Retinoblastoma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
8.
Gene Expr Patterns ; 5(3): 411-21, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15661648

RESUMEN

Retinoblastoma (RB) tumor suppressor proteins are important regulators of the cell cycle and are implicated in a wide variety of human tumors. Genetic analysis of RB mutations in humans and in model systems indicates that individual RB proteins also have distinct functions in development. Specific target genes or mechanisms of action of individual RB proteins in developmental contexts are not well understood, however. To better understand the developmental activities of the two RB family members in Drosophila, we have characterized endogenous expression patterns of Rbf1 and Rbf2 proteins and transcripts in embryos and imaginal discs. These gene products are coexpressed at several stages of development, however, spatial and temporal differences are evident, including partly complementary patterns of expression in the embryonic central nervous system.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Genes de Retinoblastoma , Proteínas Represoras/biosíntesis , Factores de Transcripción/biosíntesis , Animales , Especificidad de Anticuerpos , Proteínas de Drosophila/inmunología , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Ojo/embriología , Expresión Génica , Inmunohistoquímica , Proteínas Represoras/inmunología , Proteína de Retinoblastoma , Distribución Tisular , Factores de Transcripción/inmunología
9.
Dev Genes Evol ; 214(1): 10-8, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14648222

RESUMEN

Genes in the odd-skipped (odd) family encode a discrete subset of C2H2 zinc finger proteins that are widely distributed among metazoan phyla. Although the initial member (odd) was identified as a Drosophila pair-rule gene, various homologs are expressed within each of the three germ layers in complex patterns that suggest roles in many pathways beyond segmentation. To further investigate the evolutionary history and extant functions of genes in this family, we have initiated a characterization of two homologs, odd-1 and odd-2, identified in the genome of the nematode, Caenorhabditis elegans. Sequence comparisons with homologs from insects (Drosophila and Anopheles) and mammals suggest that two paralogs were present within an ancestral metazoan; additional insect paralogs and both extant mammalian genes likely resulted from gene duplications that occurred after the split between the arthropods and chordates. Analyses of gene function using RNAi indicate that odd-1 and odd-2 play essential and distinct roles during gut development. Specific expression of both genes in the developing intestine and other cells in the vicinity of the gut was shown using GFP-reporters. These results indicate primary functions for both genes that are most like those of the Drosophila paralogs bowel and drumstick, and support a model in which gut specification represents the ancestral role for genes in this family.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas Represoras/metabolismo , Homología de Secuencia , Estómago/embriología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Secuencia Conservada/genética , Mucosa Gástrica/metabolismo , Genes de Helminto/genética , Datos de Secuencia Molecular , Filogenia , Interferencia de ARN , Proteínas Represoras/química , Proteínas Represoras/genética , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA