Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Mult Scler Relat Disord ; 69: 104428, 2023 Jan.
Article En | MEDLINE | ID: mdl-36450174

BACKGROUND: Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that may lead to progressive disability. Here, we explored the behavioral pattern and the role of vasculature especially PDGFRB+ pericytes/ perivascular cells, in MS pathogenesis. METHODS: We have evaluated vascular changes in two different experimental allergic encephalomyelitis (EAE) mice models (MOG and PLP-induced). PDGFRB+ cells demonstrated distinct and different behavioral patterns. In both models, fibrosis formation was detected via collagen, fibronectin, and extracellular matrix accumulation. RESULTS: The PLP-induced animal model revealed that fibrosis predominantly occurs in perivascular locations and that PDGFRB+ cells are accumulated around vessels. Also, the expression of fibrotic genes and genes coding extracellular matrix (ECM) proteins are upregulated. Moreover, the perivascular thick wall structures in affected vessels of this model presented primarily increased PDGFRB+ cells but not NG2+ cells in the transgenic NG2-DsRed transgenic animal model. On the other hand, in MOG induced model, PDGFRB+ perivascular cells were accumulated at the lesion sites. PDGFRB+ cells colocalized with ECM proteins (collagen, fibronectin, and lysyl oxidase L3). Nevertheless, both MOG and PLP-immunized mice showed increasing EAE severity, and disability parallel with enhanced perivascular cell accumulation as the disease progressed from earlier (day 15) to later (day 40). CONCLUSION: As a result, we have concluded that PDGFRB+ perivascular cells may be participating in lesion progression and as well as demonstrating different responses in different EAE models.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Fibronectins/adverse effects , Receptor, Platelet-Derived Growth Factor beta/genetics , Myelin-Oligodendrocyte Glycoprotein , Pericytes/metabolism , Pericytes/pathology , Mice, Inbred C57BL , Disease Models, Animal
2.
J Electromyogr Kinesiol ; 54: 102460, 2020 Oct.
Article En | MEDLINE | ID: mdl-32905963

Amplitude variation of Hoffmann Reflex (H-reflex) was used as a tool to investigate many neuronal networks. However, H-reflex itself is a subject to intrinsic changes including post-activation depression (P-AD). We aimed to investigate P-AD and its implication on motor control in humans. Upon tibial nerve stimulation in 23 healthy participants, peak-to-peak amplitude change of H-reflex was investigated using surface electromyography (SEMG) of soleus muscle. Variety of stimulus intensities, interstimulus intervals (ISIs), voluntary contraction levels/types and force recording were used to investigate the nature of P-AD. We have shown that P-AD was significantly stronger in the shorter ISIs. The only exception was the ISI of 200 msecs which had a weaker P-AD than some of the longer ISIs. Sudden muscle relaxation, on the other hand, further increased the effectiveness of the ongoing P-AD. Moreover, P-AD displayed its full effect with the first stimulus when there was no muscle contraction and was efficient to reduce the muscle force output by about 30%. These findings provide insight about the variations and mechanism of P-AD and could lead to improvements in diagnostic tools in neurological diseases.


H-Reflex , Neural Inhibition , Neurons, Afferent/physiology , Adult , Humans , Muscle Contraction , Muscle, Skeletal/physiology , Tibial Nerve/physiology
3.
J Neural Eng ; 16(6): 066029, 2019 10 30.
Article En | MEDLINE | ID: mdl-31307021

OBJECTIVE: In order to reach electroencephalography (EEG) electrodes on the scalp, synchronized activity of neurons needs to pass thorough several tissue layers, including the skull and muscles covering the scalp. The contamination of EEG signal by temporalis and frontalis muscles has been well documented for voluntary muscle contraction even at low contraction levels. The extent of myogenic contamination during postural and/or rest activity of the temporalis and frontalis remains an impediment for EEG research. APPROACH: In this study, we first aimed to observe involuntary, continuous motor unit activity of the frontalis muscle at rest and evaluate motor unit level frontalis interference on the EEG electrodes. Second, we compared motor unit interference from the frontalis before and after artefact pruning via an independent component analysis (ICA) algorithm. MAIN RESULTS: We demonstrated that motor unit activity of the frontalis muscle produces interference potentials on the frontal electrodes at rest and the interference was significantly reduced after ICA on the frontal electrodes, but not completely eliminated. Likewise, the temporalis interference at rest was significantly smaller after ICA on the fronto-temporal electrodes, but not completely removed. SIGNIFICANCE: We documented the existence of resting involuntary activity of the temporalis and frontalis muscles underneath EEG electrodes and the removal of the EEG signal from their contiguous interference is not possible even after the use of ICA technology. We recommend that EEG researchers readdress the definition of 'rest' for EEG recordings and the ICA experts should extend their electromyography removal strategies to motor unit level interference.


Electroencephalography/methods , Facial Muscles/physiology , Frontal Lobe/physiology , Muscle Contraction/physiology , Recruitment, Neurophysiological/physiology , Temporal Lobe/physiology , Adult , Electromyography/methods , Female , Humans , Male , Young Adult
...