Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Drug Deliv ; 31(1): 2288801, 2024 Dec.
Article En | MEDLINE | ID: mdl-38073402

The primary objective of the research effort is to establish efficient solid self-nanoemulsifying drug delivery systems (S-SNEDDS) for benidipine (BD) through the systematic application of a quality-by-design (QbD)-based paradigm. Utilizing Labrafil M 2125 CS, Kolliphor EL, and Transcutol P, the BD-S-SNEDDS were created. The central composite design was adopted to optimize numerous components. Zeta potential, drug concentration, resistance to dilution, pH, refractive index, viscosity, thermodynamic stability, and cloud point were further investigated in the most efficient formulation, BD14, which had a globule size of 156.20 ± 2.40 nm, PDI of 0.25, zeta potential of -17.36 ± 0.18 mV, self-emulsification time of 65.21 ± 1.95 s, % transmittance of 99.80 ± 0.70%, and drug release of 92.65 ± 1.70% at 15 min. S-SNEDDS were formulated using the adsorption process and investigated via Fourier transform infrared spectroscopy, Differential scanning calorimeter, Scanning electron microscopy, and powder X-ray diffraction. Optimized S-SNEDDS batch BD14 dramatically decreased blood pressure in rats in contrast to the pure drug and the commercial product, according to a pharmacodynamics investigation. Accelerated stability tests validated the product's stability. Therefore, the development of oral S-SNEDDS of BD may be advantageous for raising BD's water solubility and expanding their releasing capabilities, thereby boosting oral absorption.


Biological Products , Nanoparticles , Rats , Animals , Nanoparticle Drug Delivery System , Emulsions/chemistry , Biological Availability , Drug Delivery Systems/methods , Solubility , Drug Liberation , Particle Size , Administration, Oral , Nanoparticles/chemistry , Surface-Active Agents/chemistry
...