Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(9): 4176-4184, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38387064

RESUMEN

Photoxenobactin E (1) is a natural product with an unusual thiocarboxylic acid terminus recently isolated from an entomopathogenic bacterium. The biosynthetic gene cluster associated with photoxenobactin E, and other reported derivatives, is very similar to that of piscibactin, the siderophore responsible for the iron uptake among bacteria of the Vibrionaceae family, including potential human pathogens. Here, the reisolation of 1 from the fish pathogen Vibrio anguillarum RV22 cultured under iron deprivation, its ability to chelate Ga(III), and the full NMR spectroscopic characterization of the Ga(III)-photoxenobactin E complex are presented. Our results show that Ga(III)-photoxenobactin E in solution exists in a thiol-thione tautomeric equilibrium, where Ga(III) is coordinated through the sulfur (thiol form) or oxygen (thione form) atoms of the thiocarboxylate group. This report represents the first NMR study of the chemical exchange between the thiol and thione forms associated with thiocarboxylate-Ga(III) coordination, including the kinetics of the interconversion process associated with this tautomeric exchange. These findings show significant implications for ligand design as they illustrate the potential of the thiocarboxylate group as a versatile donor for hard metal ions such as Ga(III).


Asunto(s)
Metales , Tionas , Animales , Humanos , Metales/química , Hierro/química , Sideróforos/química , Compuestos de Sulfhidrilo
2.
J Hazard Mater ; 459: 132203, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37567134

RESUMEN

Marine mammals, due to their long life span, key position in the food web, and large lipid deposits, often face significant health risks from accumulating contaminants. This systematic review examines published literature on pollutant-induced adverse health effects in the International Union for Conservation of Nature (IUCN) red-listed marine mammal species. Thereby, identifying gaps in literature across different extinction risk categories, spatial distribution and climatic zones of studied habitats, commonly used methodologies, researched pollutants, and mechanisms from cellular to population levels. Our findings reveal a lower availability of exposure-effect data for higher extinction risk species (critically endangered 16%, endangered 15%, vulnerable 66%), highlighting the need for more research. For many threatened species in the Southern Hemisphere pollutant-effect relationships are not established. Non-destructively sampled tissues, like blood or skin, are commonly measured for exposure assessment. The most studied pollutants are POPs (31%), metals (30%), and pesticides (17%). Research on mixture toxicity is scarce while pollution-effect studies primarily focus on molecular and cellular levels. Bridging the gap between molecular data and higher-level effects is crucial, with computational approaches offering a high potential through in vitro to in vivo extrapolation using (toxico-)kinetic modelling. This could aid in population-level risk assessment for threatened marine mammals.


Asunto(s)
Especies en Peligro de Extinción , Contaminantes Ambientales , Animales , Contaminación Ambiental , Mamíferos , Ecosistema , Contaminantes Ambientales/toxicidad
3.
Mar Drugs ; 21(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827136

RESUMEN

Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (-)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Filogenia , Espectroscopía Infrarroja por Transformada de Fourier , Aspergillus , Hongos/metabolismo , Metaboloma , Antibacterianos/metabolismo , Extractos Vegetales/metabolismo
4.
Microorganisms ; 8(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348696

RESUMEN

Massive fouling by the invasive ascidian Ciona intestinalis in Prince Edward Island (PEI, Canada) has been causing devastating losses to the local blue mussel farms. In order to gain first insights into so far unexplored factors that may contribute to the invasiveness of C. intestinalis in PEI, we undertook comparative microbiome and metabolome studies on specific tissues from C. intestinalis populations collected in invaded (PEI) and native regions (Helgoland and Kiel, Germany). Microbial community analyses and untargeted metabolomics revealed clear location- and tissue-specific patterns showing that biogeography and the sampled tissue shape the microbiome and metabolome of C. intestinalis. Moreover, we observed higher microbial and chemical diversity in C. intestinalis from PEI than in the native populations. Bacterial OTUs specific to C. intestinalis from PEI included Cyanobacteria (e.g., Leptolyngbya sp.) and Rhodobacteraceae (e.g., Roseobacter sp.), while populations from native sampling sites showed higher abundances of e.g., Firmicutes (Helgoland) and Epsilonproteobacteria (Kiel). Altogether 121 abundant metabolites were putatively annotated in the global ascidian metabolome, of which 18 were only detected in the invasive PEI population (e.g., polyketides and terpenoids), while six (e.g., sphingolipids) or none were exclusive to the native specimens from Helgoland and Kiel, respectively. Some identified bacteria and metabolites reportedly possess bioactive properties (e.g., antifouling and antibiotic) that may contribute to the overall fitness of C. intestinalis. Hence, this first study provides a basis for future studies on factors underlying the global invasiveness of Ciona species.

5.
Mar Drugs ; 18(6)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545808

RESUMEN

The brown alga Fucus vesiculosus is common to the intertidal zones of the Baltic Sea, where it is exposed to high fouling pressures by microorganisms. Our previous studies showed, repeatedly, the consistent antimicrobial activity of F. vesiculosus crude extracts against human pathogens, while untargeted metabolomics analyses have revealed a variety of metabolites. In this study, we applied the UPLC-QToF-MS/MS-based "bioactive molecular networking" (BMN) concept on the most bioactive n-hexane and n-butanol subextracts of Baltic F. vesiculosus coupled with in silico dereplication tools to identify the compounds responsible for antimicrobial activity. The first antimicrobial cluster identified by BMN was galactolipids. Our targeted isolation efforts for this class led to the isolation of six monogalactosyldiacylglycerol (MGDG) derivatives (1-6) and one digalactosyldiacylglycerol (DGDG, 7). The MGDGs 5 and 6 and the DGDG 7 exhibited activity against Staphylococcus aureus. The second compound class with high bioactivity was phlorotannins. In particular, phlorethol-type phlorotannins showed high correlations with antimicrobial activity based on the BMN approach, and two phlorotannins (8-9) were isolated. This study shows that antimicrobial components of F. vesiculosus reside in the algal cell walls and membranes and that BMN provides a complementary tool for the targeted isolation of bioactive metabolites.


Asunto(s)
Antibacterianos/metabolismo , Fucus/metabolismo , Animales , Metabolómica , Océanos y Mares
6.
Mar Drugs ; 19(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396687

RESUMEN

Red yeasts of the genus Rhodotorula are of great interest to the biotechnological industry due to their ability to produce valuable natural products, such as lipids and carotenoids with potential applications as surfactants, food additives, and pharmaceuticals. Herein, we explored the biosynthetic potential of R. mucilaginosa 50-3-19/20B collected from the Mid-Atlantic Ridge using modern genomics and untargeted metabolomics tools. R. mucilaginosa 50-3-19/20B exhibited anticancer activity when grown on PDA medium, while antimicrobial activity was observed when cultured on WSP-30 medium. Applying the bioactive molecular networking approach, the anticancer activity was linked to glycolipids, namely polyol esters of fatty acid (PEFA) derivatives. We purified four PEFAs (1-4) and the known methyl-2-hydroxy-3-(1H-indol-2-yl)propanoate (5). Their structures were deduced from NMR and HR-MS/MS spectra, but 1-5 showed no anticancer activity in their pure form. Illumina-based genome sequencing, de novo assembly and standard biosynthetic gene cluster (BGC) analyses were used to illustrate key components of the PEFA biosynthetic pathway. The fatty acid producing BGC3 was identified to be capable of producing precursors of PEFAs. Some Rhodotorula strains are able to convert inulin into high-yielding PEFA and cell lipid using a native exo-inulinase enzyme. The genomic locus for an exo-inulinase enzyme (g1629.t1), which plays an instrumental role in the PEFA production via the mannitol biosynthesis pathway was identified. This is the first untargeted metabolomics study on R. mucilaginosa providing new genomic insights into PEFA biosynthesis.


Asunto(s)
Genómica/métodos , Metabolómica/métodos , Rhodotorula/genética , Rhodotorula/metabolismo , Secuencia de Aminoácidos , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/metabolismo , Antineoplásicos/aislamiento & purificación , Antineoplásicos/metabolismo , Océano Atlántico , Línea Celular Tumoral , Humanos , Filogenia , Estructura Secundaria de Proteína , Espectrometría de Masas en Tándem , Secuenciación Completa del Genoma , Levaduras/genética , Levaduras/metabolismo
7.
Mar Drugs ; 16(6)2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29849004

RESUMEN

Chemical investigations on the fermentation extract obtained from an ascidian-derived Streptomyces sp. (USC-16018) yielded a new ansamycin polyketide, herbimycin G (1), as well as a known macrocyclic polyketide, elaiophylin (2), and four known diketopiperazines (3⁻6). The structures of the compounds were elucidated based on 1D/2D NMR and MS data. The absolute configuration of 1 was established by comparison of experimental and predicted electronic circular dichroism (ECD) data. Antiplasmodial activities were tested for the natural products against chloroquine sensitive (3D7) and chloroquine resistant (Dd2) Plasmodium falciparum strains; the two polyketides (1⁻2) demonstrated an inhibition of >75% against both parasite strains and while 2 was highly cytotoxic, herbimycin G (1) showed no cytotoxicity and good predicted water solubility.


Asunto(s)
Antimaláricos/aislamiento & purificación , Organismos Acuáticos/microbiología , Policétidos/aislamiento & purificación , Streptomyces/metabolismo , Urocordados/microbiología , Animales , Antimaláricos/química , Antimaláricos/farmacología , Cloroquina/farmacología , Dicroismo Circular , Dicetopiperazinas/química , Dicetopiperazinas/aislamiento & purificación , Dicetopiperazinas/farmacología , Resistencia a Medicamentos , Macrólidos/química , Macrólidos/aislamiento & purificación , Macrólidos/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/fisiología , Policétidos/química , Policétidos/farmacología
8.
J Nat Prod ; 81(4): 957-965, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29498849

RESUMEN

Microbial products are a promising source for drug leads as a result of their unique structural diversity. However, reisolation of already known natural products significantly hampers the discovery process, and it is therefore important to incorporate effective microbial isolate selection and dereplication protocols early in microbial natural product studies. We have developed a systematic approach for prioritization of microbial isolates for natural product discovery based on heteronuclear single-quantum correlation-total correlation spectroscopy (HSQC-TOCSY) nuclear magnetic resonance profiles in combination with antiplasmodial activity of extracts. The HSQC-TOCSY experiments allowed for unfractionated microbial extracts containing polyketide and peptidic natural products to be rapidly identified. Here, we highlight how this approach was used to prioritize extracts derived from a library of 119 ascidian-associated actinomycetes that possess a higher potential to produce bioactive polyketides and peptides.


Asunto(s)
Péptidos/química , Policétidos/química , Actinobacteria/química , Animales , Productos Biológicos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Urocordados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...