Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomech Eng ; 143(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33764410

RESUMEN

Step-by-step (SBS) stair navigation is used by those with movement limitations or lower-limb prosthetics and by humanoid robots. Knowledge of biomechanical parameters for SBS gait, however, is limited. Inverted pendulum (IP) models used to assess dynamic stability have not been applied to SBS gait. This study examined the ability of the linear inverted pendulum (LIP) model and a closed-form, variable-height inverted pendulum (VHIP) model to predict capture-point (CP) stability in healthy adults executing a single stair climb. A second goal was to provide baseline kinematic and kinetic data for SBS gait. Twenty young adults executed a single step onto stairs of two heights, while attached marker positions and ground reaction forces were recorded. opensim software determined body kinematics and joint kinetics. Trials were analyzed with LIP and VHIP models, and the predicted CP compared to the actual center-of-pressure (CoP) on the stair. Lower-limb joint moments were larger than those reported for step-over-step (SOS) stair gait. Leading knee rather than trailing ankle was dominant. Center-of-mass (CoM) velocity peaked at push-off. The VHIP model accounted for only slightly more than half of the forward progression of the vertical projection of the CoM and was not better than LIP predictions. This suggests that IP models are limited in modeling SBS gait, likely due to large hip and knee moments. The results from this study may also provide target values and strategies to aid design of lower-limb prostheses and powered exoskeletons.


Asunto(s)
Articulación del Tobillo
2.
PLoS One ; 12(9): e0184678, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28961240

RESUMEN

BACKGROUND: Genetic and epigenetic programs regulate dramatic structural changes during cardiac morphogenesis. Concurrent biomechanical forces within the heart created by blood flow and pressure in turn drive downstream cellular, molecular and genetic responses. Thus, a genetic-morphogenetic-biomechanical feedback loop is continually operating to regulate heart development. During the evolution of a congenital heart defect, concomitant abnormalities in blood flow, hemodynamics, and patterns of mechanical loading would be predicted to change the output of this feedback loop, impacting not only the ultimate morphology of the defect, but potentially altering tissue-level biomechanical properties of structures that appear structurally normal. AIM: The goal of this study was to determine if abnormal hemodynamics present during outflow tract formation and remodeling in a genetically engineered mouse model of persistent truncus arteriosus (PTA) causes tissue-level biomechanical abnormalities. METHODS: The passive stiffness of surface locations on the left ventricle (LV), right ventricle (RV), and outflow tract (OFT) was measured with a pipette aspiration technique in Fgf8;Isl1Cre conditional mutant embryonic mouse hearts and controls. Control and mutant experimental results were compared by a strain energy metric based on the measured relationship between pressure and aspirated height, and also used as target behavior for finite element models of the ventricles. Model geometry was determined from 3D reconstructions of whole-mount, confocal-imaged hearts. The stress-strain relationship of the model was adjusted to achieve an optimal match between model and experimental behavior. RESULTS AND CONCLUSION: Although the OFT is the most severely affected structure in Fgf8;Isl1Cre hearts, its passive stiffness was the same as in control hearts. In contrast, both the LV and RV showed markedly increased passive stiffness, doubling in LVs and quadrupling in RVs of mutant hearts. These differences are not attributable to differences in ventricular volume, wall thickness, or trabecular density. Excellent agreement was obtained between the model and experimental results. Overall our findings show that hearts developing PTA have early changes in ventricular tissue biomechanics relevant to cardiac function and ongoing development.


Asunto(s)
Modelos Animales de Enfermedad , Miocardio/patología , Tronco Arterial Persistente/patología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal
3.
J Mech Behav Biomed Mater ; 51: 367-79, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26295450

RESUMEN

Characterization of the mechanical properties of biological materials is often complicated by small volume, irregular geometry, fragility, and environmental sensitivity. Pipette aspiration and nanoindentation testing deal well with these limitations and have seen increasing use in biomaterial characterization, but little research has been done to systematically validate these techniques for soft materials. This study compared the results of pipette aspiration, nanoindentation, and bulk uniaxial tension and compression in determining the small-strain elastic moduli of a range of biomedically-relevant materials, a series of silicone elastomers and polyacrylamide hydrogels. A custom apparatus was developed for pipette aspiration testing, a commercial Hysitron instrument with custom spherical tip was used for nanoindentation, and standard commercial machines were used for tension and compression testing. The measured small-strain elastic moduli ranged from 27 to 368 kPa for the silicones and 11 to 44 kPa for the polyacrylamide gels. All methods detected expected trends in material stiffness, except for the results from one inconsistent silicone. Pipette aspiration and nanoindentation measured similar elastic moduli for silicone materials, but pipette aspiration measured consistently larger stiffness in the hydrogels, which may be explained by the gels' resistance to tension. Despite the difference in size scale among the testing methods, size does not appear to influence the results. These results suggest that both pipette aspiration and nanoindentation are suitable for measuring mechanical properties of soft biomaterials and appear to have no more limitations than bulk techniques.


Asunto(s)
Materiales Biocompatibles , Ensayo de Materiales/métodos , Nanotecnología/métodos , Análisis de Elementos Finitos , Fenómenos Mecánicos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA