Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsc Res Tech ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725294

RESUMEN

This study discusses the micro-level structural details of Cichorieae pollen sources elucidated by scanning electron microscopy (SEM) and explains their symmetry and morphometry. The in-depth knowledge from the electron ultrastructure of Asteraceae pollen has provided insights into enhanced pollen morphology, and the antimicrobial significance of species under study presents novel avenues for their natural defense mechanisms in the development of antimicrobial agents. In this research, both quantitative and qualitative features of pollen were examined. The pollen grains are prolate-spheroidal and oblate-spheroidal in shape, characterized by a maximum polar diameter of 55.6-61.0 µm and a maximum equatorial distance of 68.3-74.4 µm. SEM reveals various configurations such as echinate perforate-tectate, psilate, and echino-lophate perforate. The Cichorieae species have significant antimicrobial efficacy and are promising sources for the development of novel antimicrobial drugs with potential implications in pharmaceutical and healthcare industries. SEM analysis of Cichorieae pollens has provided remarkable insights into their unique structures, revealing diverse shapes and surface ornamentations, which can be used for accurate Asteraceae species identification. RESEARCH HIGHLIGHTS: SEM provides unique pollen surface structures and patterns of Chicory pollen grains. Chemical composition of Chicory botanical sources provides valuable information on their potential as antimicrobial agents. SEM imaging reveals specialized fenestrate grain structures of taxonomic importance.

2.
Saudi J Biol Sci ; 24(4): 883-891, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28490961

RESUMEN

Present study was under taken to predict the possible DNA damages (genotoxicity) and carcinogenicity caused by radiofrequency radiations (RF) to living tissue. Dry seeds of chickpea were treated with GSM cell phone (900 MHz) and laptop (3.31 GHz) as RF source for 24 and 48 h. Untreated seeds were used as (0 h) negative control and Gamma rays (250 Gray) as positive control. Plant chromosomal aberration assay was used as genotoxicity marker. All the treatment of RF inhibits seed germination percentage. 48 h laptop treatment has the most negative effect as compared to untreated control. A decrease was observed in mitotic index (M.I) and increase in abnormality index (A.I) with the increase in exposure duration and frequency in (Hz). Cell membrane damages were also observed only in 48 h exposure of cell phone and laptop (RF). Maximum nuclear membrane damages and ghost cells were again recorded in 48 h exposure of cell phone and laptop. The radiofrequency radiations (900 MHz and 3.31 GHz) are only genotoxic as they induce micronuclei, bi-nuclei, multi-nuclei and scattered nuclei but could be carcinogenic as 48 h incubation of RF induced fragmentation and ghost cells. Therefore cell phones and laptop should not be used unnecessarily to avoid possible genotoxic and carcinogenic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...