Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Life (Basel) ; 14(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38792563

RESUMEN

The aim of this study was to investigate the molecular composition of follicular fluid (FF) extracellular vesicles (EVs) in women of different reproductive ages and its possible relationship to sperm fertilizing ability. FF EVs were obtained by differential centrifugation. The concentration and size distribution of FF EVs were analyzed by nanoparticle tracking analysis. The lipidome and proteome were analyzed by liquid chromatography-mass spectrometry. The isolated FF EVs had a variety of shapes and sizes; their concentration and size distribution did not differ significantly between the age groups. In women younger than 35 years, the concentration of vesicular progesterone was 6.6 times higher than in women older than 35 years, and the total levels of the main lipid classes were increased in younger women. A proteomic analysis revealed that not only FF EV-specific proteins, but also proteins involved in sperm activation were present. New data were obtained on the composition of FF EVs, confirming their importance as molecular indicators of age-related changes in the female reproductive system. In addition, these results shed light on the possible interaction between the FF EVs of women in different age groups and male germ cells. Therefore, studying the transcriptomic and metabolomic profile of FF EVs may be a crucial approach to evaluate the efficacy of ART.

2.
Methods Mol Biol ; 2758: 389-399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549026

RESUMEN

The study of urinary peptidome is an important area of research, which concerns the characterization of endogenous peptides, as well as the identification of biomarkers for a wide range of socially significant diseases. First of all, this relates to renal and genitourinary pathologies and/or pathologies associated with proteinuria, such as kidney diseases, bladder, prostate and ovarian cancers, diabetic nephropathy, and pre-eclampsia. Unlike proteins, peptides do not require proteolytic hydrolysis, can be analyzed in their native form and can provide certain information about occurring (patho)physiological processes. Mass spectrometry (MS)-based approaches are the most unbiased and sensitive instruments with high multiplexing capacity and provided most of the current information about endogenous urine peptides. However, despite the large number of urine peptidomic studies, there are certain issues related to the insufficient comparability of their results due to the lack of consistent approaches to their interpretation. Also the development of a custom project-specific protein library for endogenous peptides search and identification is another important point that should be noted in the context of high-throughput peptidomic analysis. Here we propose the custom-specific urinary protein database and the grouping of endogenous urinary peptides with overlapping sequences as useful tools, which can facilitate the acquisition and analysis of LC-MS peptidomic data, as well as the comparison of results of different studies, which should facilitate their more efficient further application.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Humanos , Masculino , Femenino , Embarazo , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Proteínas , Péptidos/metabolismo , Proteómica/métodos
3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069155

RESUMEN

Intrauterine growth restriction (IUGR) remains a significant concern in modern obstetrics, linked to high neonatal health problems and even death, as well as childhood disability, affecting adult quality of life. The role of maternal and fetus adaptation during adverse pregnancy is still not completely understood. This study aimed to investigate the disturbance in biological processes associated with isolated IUGR via blood plasma proteomics. The levels of 125 maternal plasma proteins were quantified by liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) with corresponding stable isotope-labeled peptide standards (SIS). Thirteen potential markers of IUGR (Gelsolin, Alpha-2-macroglobulin, Apolipoprotein A-IV, Apolipoprotein B-100, Apolipoprotein(a), Adiponectin, Complement C5, Apolipoprotein D, Alpha-1B-glycoprotein, Serum albumin, Fibronectin, Glutathione peroxidase 3, Lipopolysaccharide-binding protein) were found to be inter-connected in a protein-protein network. These proteins are involved in plasma lipoprotein assembly, remodeling, and clearance; lipid metabolism, especially cholesterol and phospholipids; hemostasis, including platelet degranulation; and immune system regulation. Additionally, 18 proteins were specific to a particular type of IUGR (early or late). Distinct patterns in the coagulation and fibrinolysis systems were observed between isolated early- and late-onset IUGR. Our findings highlight the complex interplay of immune and coagulation factors in IUGR and the differences between early- and late-onset IUGR and other placenta-related conditions like PE. Understanding these mechanisms is crucial for developing targeted interventions and improving outcomes for pregnancies affected by IUGR.


Asunto(s)
Retardo del Crecimiento Fetal , Proteómica , Embarazo , Adulto , Recién Nacido , Femenino , Humanos , Niño , Retardo del Crecimiento Fetal/metabolismo , Calidad de Vida , Feto/metabolismo , Placenta/metabolismo
4.
Biomedicines ; 11(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37509426

RESUMEN

Metastasis is a serious and often life-threatening condition, representing the leading cause of death among women with breast cancer (BC). Although the current clinical classification of BC is well-established, the addition of minimally invasive laboratory tests based on peripheral blood biomarkers that reflect pathological changes in the body is of utmost importance. In the current study, the serum proteome and lipidome profiles for 50 BC patients with (25) and without (25) metastasis were studied. Targeted proteomic analysis for concertation measurements of 125 proteins in the serum was performed via liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) using the BAK 125 kit (MRM Proteomics Inc., Victoria, BC, Canada). Untargeted label-free lipidomic analysis was performed using liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS), in both positive and negative ion modes. Finally, 87 serum proteins and 295 lipids were quantified and showed a moderate correlation with tumor grade, histological and biological subtypes, and the number of lymph node metastases. Two highly accurate classifiers that enabled distinguishing between metastatic and non-metastatic BC were developed based on proteomic (accuracy 90%) and lipidomic (accuracy 80%) features. The best classifier (91% sensitivity, 89% specificity, AUC = 0.92) for BC metastasis diagnostics was based on logistic regression and the serum levels of 11 proteins: alpha-2-macroglobulin, coagulation factor XII, adiponectin, leucine-rich alpha-2-glycoprotein, alpha-2-HS-glycoprotein, Ig mu chain C region, apolipoprotein C-IV, carbonic anhydrase 1, apolipoprotein A-II, apolipoprotein C-II and alpha-1-acid glycoprotein 1.

5.
Molecules ; 28(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241899

RESUMEN

Bleomycin, which is widely used as an antitumor agent, possesses serious adverse effects such as pulmonary toxicity. Local nanoaerosol deposition for lung cancer treatment is a promising alternative to drug delivery to lung lesions. The aim of this work is to test the hypothesis that bleomycin nanoaerosol can be effectively used to treat multiple lung metastases. To obtain bleomycin nanoaerosol, an aerosol generator based on electrospray of a solution of a nonvolatile substance with gas-phase neutralization of charged aerosol particles was used. Lung metastases in murine Lewis lung carcinoma and B16 melanoma animal models were counted. The effect of inhaled bleomycin nanoparticles on the number and volume of metastases, as well as pulmonary side effects, was investigated. Using a mouse exposure chamber, the dose-dependent effect of inhaled bleomycin on tumor volume was evaluated in comparison with intraperitoneal administration. Bleomycin nanoaerosol reduced the volume of metastases and produced a higher antitumor effect at much lower doses. It has been established that long-term exposure to nanoaerosol with a low dose of bleomycin is capable of suppressing cancer cell growth. The treatment was well tolerated. In the lungs, minor changes were found in the form of focal-diffuse infiltration of the lung parenchyma.


Asunto(s)
Carcinoma , Neoplasias Pulmonares , Animales , Ratones , Bleomicina/toxicidad , Aerosoles y Gotitas Respiratorias , Pulmón , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Carcinoma/patología
6.
Molecules ; 28(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37110557

RESUMEN

Glomerulopathies with nephrotic syndrome that are resistant to therapy often progress to end-stage chronic kidney disease (CKD) and require timely and accurate diagnosis. Targeted quantitative urine proteome analysis by mass spectrometry (MS) with multiple-reaction monitoring (MRM) is a promising tool for early CKD diagnostics that could replace the invasive biopsy procedure. However, there are few studies regarding the development of highly multiplexed MRM assays for urine proteome analysis, and the two MRM assays for urine proteomics described so far demonstrate very low consistency. Thus, the further development of targeted urine proteome assays for CKD is actual task. Herein, a BAK270 MRM assay previously validated for blood plasma protein analysis was adapted for urine-targeted proteomics. Because proteinuria associated with renal impairment is usually associated with an increased diversity of plasma proteins being present in urine, the use of this panel was appropriate. Another advantage of the BAK270 MRM assay is that it includes 35 potential CKD markers described previously. Targeted LC-MRM MS analysis was performed for 69 urine samples from 46 CKD patients and 23 healthy controls, revealing 138 proteins that were found in ≥2/3 of the samples from at least one of the groups. The results obtained confirm 31 previously proposed CKD markers. Combination of MRM analysis with machine learning for data processing was performed. As a result, a highly accurate classifier was developed (AUC = 0.99) that enables distinguishing between mild and severe glomerulopathies based on the assessment of only three urine proteins (GPX3, PLMN, and A1AT or SHBG).


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Proteoma , Espectrometría de Masas/métodos , Proteinuria/diagnóstico , Proteínas Sanguíneas , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/orina , Biomarcadores
7.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047497

RESUMEN

The molecular mechanisms underlying cardiovascular complications after the SARS-CoV-2 infection remain unknown. The goal of our study was to analyze the features of blood coagulation, platelet aggregation, and plasma proteomics in COVID-19 convalescents with AMI. The study included 66 AMI patients and 58 healthy volunteers. The groups were divided according to the anti-N IgG levels (AMI post-COVID (n = 44), AMI control (n = 22), control post-COVID (n = 31), and control (n = 27)). All participants underwent rotational thromboelastometry, thrombodynamics, impedance aggregometry, and blood plasma proteomics analysis. Both AMI groups of patients demonstrated higher values of clot growth rates, thrombus size and density, as well as the elevated levels of components of the complement system, proteins modifying the state of endothelium, acute-phase and procoagulant proteins. In comparison with AMI control, AMI post-COVID patients demonstrated decreased levels of proteins connected to inflammation and hemostasis (lipopolysaccharide-binding protein, C4b-binding protein alpha-chain, plasma protease C1 inhibitor, fibrinogen beta-chain, vitamin K-dependent protein S), and altered correlations between inflammation and fibrinolysis. A new finding is that AMI post-COVID patients opposite the AMI control group, are characterized by a less noticeable growth of acute-phase proteins and hemostatic markers that could be explained by prolonged immune system alteration after COVID-19.


Asunto(s)
COVID-19 , Infarto del Miocardio , Humanos , Proteómica , COVID-19/complicaciones , SARS-CoV-2 , Infarto del Miocardio/metabolismo , Hemostasis , Inflamación , Plasma/metabolismo
8.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108355

RESUMEN

It is suggested that activated CD44+ cells play a profibrogenic role in the pathogenesis of active glomerulopathies. Complement activation is also involved in renal fibrogenesis. The aim of the study was to evaluate the role of the activation of CD44+ cells in the kidney tissue and complement components' filtration to the urine as factors of renal tissue fibrosis in patients with glomerulopathies. In total, 60 patients with active glomerulopathies were included in our study: 29 patients with focal segmental glomerulosclerosis (FSGS), 10 patients with minimal change disease (MCD), 10 patients with membranous nephropathy (MN), and 11 patients with IgA nephropathy. The immunohistochemical peroxidase method was used to study the expression of CD44+ in kidney biopsies. Components of complement were analyzed in urine by the multiple reaction monitoring (MRM) approach using liquid chromatography. Strong CD44 expression was noted predominantly in PEC and mesangial cells (MC) in patients with FSGS, and to a lesser extent, in patients with MN and IgA nephropathy, and it was absent in patients with MCD. Expression of profibrogenic CD44+ in glomeruli correlated with the levels of proteinuria and complement C2, C3, and C9 components, and CFB and CFI in urine. The CD44+ expression scores in the renal interstitium correlated with the level of C3 and C9 components of complement in the urine and the area of tubulo-interstitial fibrosis. The strongest expression of CD44+ was found in the glomeruli (MC, PEC, and podocytes) of patients with FSGS compared with other glomerulopathies. The CD44 expression score in the glomeruli and interstitium is associated with high levels of complement components in the urine and renal fibrosis.


Asunto(s)
Glomerulonefritis por IGA , Glomerulonefritis Membranosa , Glomerulonefritis , Glomeruloesclerosis Focal y Segmentaria , Humanos , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomerulonefritis/complicaciones , Proteinuria , Enfermedad Crónica , Hematuria , Fibrosis , Receptores de Hialuranos/metabolismo
9.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555683

RESUMEN

Chronic liver diseases affect more than 1 billion people worldwide and represent one of the main public health issues. Nonalcoholic fatty liver disease (NAFLD) accounts for the majority of mortal cases, while there is no currently approved therapeutics for its treatment. One of the prospective approaches to NAFLD therapy is to use a mixture of natural compounds. They showed effectiveness in alleviating NAFLD-related conditions including steatosis, fibrosis, etc. However, understanding the mechanism of action of such mixtures is important for their rational application. In this work, we propose a new dereplication workflow for deciphering the mechanism of action of the lignin-derived natural compound mixture. The workflow combines the analysis of molecular components with high-resolution mass spectrometry, selective chemical tagging and deuterium labeling, liver tissue penetration examination, assessment of biological activity in vitro, and computational chemistry tools used to generate putative structural candidates. Molecular docking was used to propose the potential mechanism of action of these structures, which was assessed by a proteomic experiment.


Asunto(s)
Aprendizaje Profundo , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Lignina/farmacología , Polifenoles/farmacología , Polifenoles/uso terapéutico , Polifenoles/análisis , Proteómica , Simulación del Acoplamiento Molecular , Espectrometría de Masas
10.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293475

RESUMEN

Primary focal segmental glomerulosclerosis (FSGS), along with minimal change disease (MCD), are diseases with primary podocyte damage that are clinically manifested by the nephrotic syndrome. The pathogenesis of these podocytopathies is still unknown, and therefore, the search for biomarkers of these diseases is ongoing. Our aim was to determine of the proteomic profile of urine from patients with FSGS and MCD. Patients with a confirmed diagnosis of FSGS (n = 30) and MCD (n = 9) were recruited for the study. For a comprehensive assessment of the severity of FSGS a special index was introduced, which was calculated as follows: the first score was assigned depending on the level of eGFR, the second score-depending on the proteinuria level, the third score-resistance to steroid therapy. Patients with the sum of these scores of less than 3 were included in group 1, with 3 or more-in group 2. The urinary proteome was analyzed using liquid chromatography/mass spectrometry. The proteome profiles of patients with severe progressive FSGS from group 2, mild FSGS from group 1 and MCD were compared. Results of the label free analysis were validated using targeted LC-MS based on multiple reaction monitoring (MRM) with stable isotope labelled peptide standards (SIS) available for 47 of the 76 proteins identified as differentiating between at least one pair of groups. Quantitative MRM SIS validation measurements for these 47 proteins revealed 22 proteins with significant differences between at least one of the two group pairs and 14 proteins were validated for both comparisons. In addition, all of the 22 proteins validated by MRM SIS analysis showed the same direction of change as at the discovery stage with label-free LC-MS analysis, i.e., up or down regulation in MCD and FSGS1 against FSGS2. Patients from the FSGS group 2 showed a significantly different profile from both FSGS group 1 and MCD. Among the 47 significantly differentiating proteins, the most significant were apolipoprotein A-IV, hemopexin, vitronectin, gelsolin, components of the complement system (C4b, factors B and I), retinol- and vitamin D-binding proteins. Patients with mild form of FSGS and MCD showed lower levels of Cystatin C, gelsolin and complement factor I.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Humanos , Nefrosis Lipoidea/diagnóstico , Nefrosis Lipoidea/metabolismo , Nefrosis Lipoidea/patología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Cistatina C/metabolismo , Proteómica , Gelsolina/metabolismo , Proteoma/metabolismo , Hemopexina/metabolismo , Vitronectina/metabolismo , Factor I de Complemento/metabolismo , Vitamina A/metabolismo , Biomarcadores , Esteroides , Vitamina D
11.
Biochemistry (Mosc) ; 87(8): 762-776, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36171657

RESUMEN

Alzheimer's disease (AD) is the most common socially significant neurodegenerative pathology, which currently affects more than 30 million elderly people worldwide. Since the number of patients grows every year and may exceed 115 million by 2050, and due to the lack of effective therapies, early prediction of AD remains a global challenge, solution of which can contribute to the timely appointment of a preventive therapy in order to avoid irreversible changes in the brain. To date, clinical assays for the markers of amyloidosis in cerebrospinal fluid (CSF) have been developed, which, in conjunction with the brain MRI and PET studies, are used either to confirm the diagnosis based on obligate clinical criteria or to predict the risk of AD developing at the stage of mild cognitive impairment (MCI). However, the problem of predicting AD at the asymptomatic stage remains unresolved. In this regard, the search for new protein markers and studies of proteomic changes in CSF and blood plasma are of particular interest and may consequentially identify particular pathways involved in the pathogenesis of AD. Studies of specific proteomic changes in blood plasma deserve special attention and are of increasing interest due to the much less invasive method of sample collection as compared to CSF, which is important when choosing the object for large-scale screening. This review briefly summarizes the current knowledge on proteomic markers of AD and considers the prospects of developing reliable methods for early identification of AD risk factors based on the proteomic profile.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Disfunción Cognitiva/diagnóstico , Humanos , Proteómica , Proteínas tau
12.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35887259

RESUMEN

Early recognition of the risk of Alzheimer's disease (AD) onset is a global challenge that requires the development of reliable and affordable screening methods for wide-scale application. Proteomic studies of blood plasma are of particular relevance; however, the currently proposed differentiating markers are poorly consistent. The targeted quantitative multiple reaction monitoring (MRM) assay of the reported candidate biomarkers (CBs) can contribute to the creation of a consistent marker panel. An MRM-MS analysis of 149 nondepleted EDTA-plasma samples (MHRC, Russia) of patients with AD (n = 47), mild cognitive impairment (MCI, n = 36), vascular dementia (n = 8), frontotemporal dementia (n = 15), and an elderly control group (n = 43) was performed using the BAK 125 kit (MRM Proteomics Inc., Canada). Statistical analysis revealed a significant decrease in the levels of afamin, apolipoprotein E, biotinidase, and serum paraoxonase/arylesterase 1 associated with AD. Different training algorithms for machine learning were performed to identify the protein panels and build corresponding classifiers for the AD prognosis. Machine learning revealed 31 proteins that are important for AD differentiation and mostly include reported earlier CBs. The best-performing classifiers reached 80% accuracy, 79.4% sensitivity and 83.6% specificity and were able to assess the risk of developing AD over the next 3 years for patients with MCI. Overall, this study demonstrates the high potential of the MRM approach combined with machine learning to confirm the significance of previously identified CBs and to propose consistent protein marker panels.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico , Biomarcadores , Proteínas Sanguíneas , Disfunción Cognitiva/diagnóstico , Humanos , Aprendizaje Automático , Espectrometría de Masas , Proteómica
13.
Mass Spectrom Rev ; : e21775, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347731

RESUMEN

This review covers the results of the application of mass spectrometric (MS) techniques to study the diversity of beta-amyloid (Aß) peptides in human samples. Since Aß is an important hallmark of Alzheimer's disease (AD), which is a socially significant neurodegenerative disorder of the elderly worldwide, analysis of its endogenous variations is of particular importance for elucidating the pathogenesis of AD, predicting increased risks of the disease onset, and developing effective therapy. MS approaches have no alternative for the study of complex samples, including a wide variety of Aß proteoforms, differing in length and modifications. Approaches based on matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography with electrospray ionization tandem MS are most common in Aß studies. However, Aß forms with isomerized and/or racemized Asp and Ser residues require the use of special methods for separation and extra sensitive and selective methods for detection. Overall, this review summarizes current knowledge of Aß species found in human brain, cerebrospinal fluid, and blood plasma; focuses on application of different MS approaches for Aß studies; and considers the potential of MS techniques for further studies of Aß-peptides.

14.
Int J Biol Macromol ; 206: 64-73, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219777

RESUMEN

In this study, we examined for the first time the effect of the HOCl/OCl-- and H2O2-induced oxidation of Glu-plasminogen on damage to its primary structure and the biological activity of plasmin. The consolidated results obtained with the aid of MS/MS, electrophoresis, and colourimetry, demonstrated that none of the oxidised amino acid residues found in the proenzyme treated with 25 µM HOCl/OCl- or 100 µM H2O2 were functionally significant for plasminogen. However, the treatment of plasminogen with increasing concentrations of HOCl/OCl- from 25 µM to 100 µM or H2O2 from 100 µM to 300 µM promoted a partial loss in the activity of oxidised plasmin. Several methionine residues (Met57, Met182, Met385, Met404, Met585, and Met788) localized in different protein domains have been shown to serve as ROS traps, thus providing an efficient defense mechanism against oxidative stress. Oxidised Trp235, Trp417, Trp427, Trp761, and Tyr672 are most likely responsible for the reduced biological activity of Glu-plasminogen subjected to strong oxidation. The results of the present study, along with those of previous studies, indicate that the structure of Glu-plasminogen is adapted to oxidation to withstand oxidative stress induced by ROS.


Asunto(s)
Ácido Hipocloroso , Plasminógeno , Fibrinolisina , Peróxido de Hidrógeno , Ácido Hipocloroso/química , Peróxidos , Plasminógeno/química , Espectrometría de Masas en Tándem
15.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163759

RESUMEN

Changes in bacterial physiology caused by the combined action of the magnetic force and microgravity were studied in Escherichia coli grown using a specially developed device aboard the International Space Station. The morphology and metabolism of E. coli grown under spaceflight (SF) or combined spaceflight and magnetic force (SF + MF) conditions were compared with ground cultivated bacteria grown under standard (control) or magnetic force (MF) conditions. SF, SF + MF, and MF conditions provided the up-regulation of Ag43 auto-transporter and cell auto-aggregation. The magnetic force caused visible clustering of non-sedimenting bacteria that formed matrix-containing aggregates under SF + MF and MF conditions. Cell auto-aggregation was accompanied by up-regulation of glyoxylate shunt enzymes and Vitamin B12 transporter BtuB. Under SF and SF + MF but not MF conditions nutrition and oxygen limitations were manifested by the down-regulation of glycolysis and TCA enzymes and the up-regulation of methylglyoxal bypass. Bacteria grown under combined SF + MF conditions demonstrated superior up-regulation of enzymes of the methylglyoxal bypass and down-regulation of glycolysis and TCA enzymes compared to SF conditions, suggesting that the magnetic force strengthened the effects of microgravity on the bacterial metabolism. This strengthening appeared to be due to magnetic force-dependent bacterial clustering within a small volume that reinforced the effects of the microgravity-driven absence of convectional flows.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Técnicas Bacteriológicas/instrumentación , Proteínas de Escherichia coli/genética , Escherichia coli/fisiología , Proteínas de Transporte de Membrana/genética , Técnicas Bacteriológicas/métodos , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Glucólisis , Glioxilatos/metabolismo , Fenómenos Magnéticos , Oxígeno/metabolismo , Piruvaldehído/metabolismo , Vuelo Espacial , Ingravidez
16.
Anal Chem ; 94(4): 2016-2022, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040635

RESUMEN

Mass spectrometry (MS)-based quantitative proteomic methods have become some of the major tools for protein biomarker discovery and validation. The recently developed parallel reaction monitoring-parallel accumulation-serial fragmentation (prm-PASEF) approach on a Bruker timsTOF Pro mass spectrometer allows the addition of ion mobility as a new dimension to LC-MS-based proteomics and increases proteome coverage at a reduced analysis time. In this study, a prm-PASEF approach was used for the multiplexed absolute quantitation of proteins in human plasma using isotope-labeled peptide standards for 125 plasma proteins, over a broad (104-106) dynamic range. Optimization of LC and MS parameters, such as accumulation time and collision energy, resulted in improved sensitivity for more than half of the targets (73 out of 125 peptides) by increasing the signal-to-noise ratio by a factor of up to 10. Overall, 41 peptides showed up to a 2-fold increase in sensitivity, 25 peptides showed up to a 5-fold increase in sensitivity, and 7 peptides showed up to a 10-fold increase in sensitivity. Implementation of the prm-PASEF method allowed absolute protein quantitation (down to 1.13 fmol) in human plasma samples. A comparison of the concentration values of plasma proteins determined by MRM on a QTRAP instrument and by prm-PASEF on a timsTOF Pro revealed an excellent correlation (R2 = 0.97) with a slope of close to 1 (0.99), demonstrating that prm-PASEF is well suited for "absolute" quantitative proteomics.


Asunto(s)
Proteoma , Proteómica , Proteínas Sanguíneas , Humanos , Espectrometría de Masas , Péptidos/análisis , Proteómica/métodos
17.
Expert Rev Proteomics ; 18(8): 637-642, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34477466

RESUMEN

INTRODUCTION: Lung cancer remains the most prevalent cause of cancer mortality worldwide mainly due to insufficient availability of early screening methods for wide-scale application. Exhaled breath condensate (EBC) is currently considered as one of the promising targets for early screening and is particularly attractive due to its absolutely noninvasive collection and possibility for long-term frozen storage. EBC proteome analysis can provide valuable information about the (patho)physiological changes in the respiratory system and may help to identify in time a high risk of lung cancer. Mass spectrometry (MS) profiling of EBC proteome seems to have no alternative in obtaining the most extensive data and characteristic marker panels for screening. AREAS COVERED: This special report summarizes the data of several proteomic studies of EBC in normal and lung cancer (from 2012 to 2021, PubMed), focuses on the possible reasons for the significant discrepancy in the results, and discusses some aspects for special attention in further studies. EXPERT OPINION: The significant discrepancy in the results of various studies primarily highlights the need to create standardized protocols for the collection and preparation of EBC for proteomic analysis. The application of quantitative and targeted LC-MS/MS based approaches seems to be the most promising in further EBC proteomic studies.


Asunto(s)
Neoplasias Pulmonares , Proteoma , Biomarcadores , Biomarcadores de Tumor , Pruebas Respiratorias , Cromatografía Liquida , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico , Proteómica , Espectrometría de Masas en Tándem
18.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445356

RESUMEN

Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.


Asunto(s)
Ferritinas/genética , Poríferos/genética , Animales , Secuencia Conservada , Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Redes y Vías Metabólicas/genética , Modelos Moleculares , Filogenia , Poríferos/clasificación , Poríferos/metabolismo , Dominios Proteicos/genética , Análisis de Secuencia de ADN , Transcriptoma/fisiología
19.
Viruses ; 13(3)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801923

RESUMEN

The effects of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in women on the gestation course and the health of the fetus, particularly in the first and second trimesters, remain very poorly explored. This report describes a case in which the normal development of pregnancy was complicated immediately after the patient had experienced Coronavirus disease 2019 (COVID-19) at the 21st week of gestation. Specific conditions included critical blood flow in the fetal umbilical artery, fetal growth restriction (1st percentile), right ventricular hypertrophy, hydropericardium, echo-characteristics of hypoxic-ischemic brain injury (leukomalacia in periventricular area) and intraventricular hemorrhage at the 25th week of gestation. Premature male neonate delivered at the 26th week of gestation died after 1 day 18 h due to asystole. The results of independent polymerase chain reaction (PCR), mass spectrometry and immunohistochemistry analyses of placenta tissue, umbilical cord blood and child blood jointly indicated vertical transmission of SARS-CoV-2 from mother to the fetus, which we conclude to be the major cause for the development of maternal vascular malperfusion in the studied case.


Asunto(s)
COVID-19/transmisión , Retardo del Crecimiento Fetal/virología , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2/fisiología , Adulto , COVID-19/mortalidad , COVID-19/patología , COVID-19/virología , Resultado Fatal , Femenino , Retardo del Crecimiento Fetal/mortalidad , Retardo del Crecimiento Fetal/patología , Humanos , Recién Nacido , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Embarazo , Complicaciones Infecciosas del Embarazo/mortalidad , Complicaciones Infecciosas del Embarazo/patología , Segundo Trimestre del Embarazo , SARS-CoV-2/genética
20.
Diagnostics (Basel) ; 11(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33923995

RESUMEN

Despite the differences in the clinical manifestations of major obstetric syndromes, such as preeclampsia (PE) and intrauterine growth restriction (IUGR), their pathogenesis is based on the dysregulation of proliferation, differentiation, and invasion of cytotrophoblast cells that occur in the developing placenta, decidual endometrium, and myometrial parts of the spiral arteries. To understand the similarities and differences in the molecular mechanisms of PE and IUGR, samples of the placental bed and placental tissue were analyzed using protein mass spectrometry and the deep sequencing of small RNAs, followed by validation of the data obtained by quantitative RT-PCR in real time. A comparison of the transcriptome and proteomic profiles in the samples made it possible to conclude that the main changes in the molecular profile in IUGR occur in the placental bed, in contrast to PE, in which the majority of molecular changes occurs in the placenta. In placental bed samples, significant changes in the ratio of miRNA and its potential target gene expression levels were revealed, which were unique for IUGR (miR-30c-5p/VIM, miR-28-3p/VIM, miR-1-3p/ANXA2, miR-30c-5p/FBN1; miR-15b-5p/MYL6), unique for PE (miR-185-3p/FLNA), common for IUGR and PE (miR-30c-5p/YWHAZ and miR-654-3p/FGA), but all associated with abnormality in the hemostatic and vascular systems as well as with an inflammatory process at the fetal‒maternal interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA