Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; : e202400549, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031647

RESUMEN

A growing number of experimental evidence emphasizes that photobiological phenomena are not always the sum of the effect of individual wavelengths present in the emission spectrum of light sources. Unfortunately, tools are missing to identify such non-additive effects and predict effects of various exposure conditions. In the present work, we addressed these points for the formation of pyrimidine dimers in DNA upon co-exposure to UVC, UVB and UVA radiation. We first applied a combination index approach to determine whether mixtures of theses UV ranges exhibited additive, inhibitory or synergistic effects on the formation of cyclobutane pyrimidine dimers, (6-4) photoproducts and Dewar valence isomers. A predictive approach based on an experimental design strategy was then used to quantify the contribution of each wavelength range to the formation of DNA photoproducts. The obtained models allowed us to accurately predict the level of pyrimidine dimers in DNA irradiated under different conditions. The data were found to be more accurate than those obtained with the simple additive approach underlying the use of action spectra. Experimental design thus appears as an attractive concept that could be widely applied in photobiology even for cellular experiments.

2.
ACS Appl Mater Interfaces ; 16(23): 29645-29656, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38809175

RESUMEN

The cell-SELEX method enables efficient selection of aptamers that bind whole bacterial cells. However, after selection, it is difficult to determine their binding affinities using common screening methods because of the large size of the bacteria. Here we propose a simple surface plasmon resonance imaging method (SPRi) for aptamer characterization using bacterial membrane vesicles, called nanosomes, instead of whole cells. Nanosomes were obtained from membrane fragments after mechanical cell disruption in order to preserve the external surface epitopes of the bacterium used for their production. The study was conducted on Bacillus cereus (B. cereus), a Gram-positive bacterium commonly found in soil, rice, vegetables, and dairy products. Four aptamers and one negative control were initially grafted onto a biochip. The binding of B. cereus cells and nanosomes to immobilized aptamers was then compared. The use of nanosomes instead of cells provided a 30-fold amplification of the SPRi signal, thus allowing the selection of aptamers with higher affinities. Aptamer SP15 was found to be the most sensitive and selective for B. cereus ATCC14579 nanosomes. It was then truncated into three new sequences (SP15M, SP15S1, and SP15S2) to reduce its size while preserving the binding site. Fitting the results of the SPRi signal for B. cereus nanosomes showed a similar trend for SP15 and SP15M, and a slightly higher apparent association rate constant kon for SP15S2, which is the truncation with a high probability of a G-quadruplex structure. These observations were confirmed on nanosomes from B. cereus ATCC14579 grown in milk and from the clinical strain B. cereus J066. The developed method was validated using fluorescence microscopy on whole B. cereus cells and the SP15M aptamer labeled with a rhodamine. This study showed that nanosomes can successfully mimic the bacterial membrane with great potential for facilitating the screening of specific ligands for bacteria.


Asunto(s)
Aptámeros de Nucleótidos , Bacillus cereus , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Bacillus cereus/metabolismo , Bacillus cereus/química , Técnica SELEX de Producción de Aptámeros
3.
Biosens Bioelectron ; 251: 116088, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335876

RESUMEN

This review takes stock of the various optical fiber-based biosensors that could be used for in vivo applications. We discuss the characteristics that biosensors must have to be suitable for such applications and the corresponding transduction modes. In particular, we focus on optical fiber biosensors based on fluorescence, evanescent wave, plasmonics, interferometry, and Raman phenomenon. The operational principles, implemented solutions, and performances are described and debated. The different sensing configurations, such as the side- and tip-based fiber biosensors, are illustrated, and their adaptation for in vivo measurements is discussed. The required implementation of multiplexed biosensing on optical fibers is shown. In particular, the use of multi-fiber assemblies, one of the most optimal configurations for multiplexed detection, is discussed. Different possibilities for multiple localized functionalizations on optical fibers are presented. A final section is devoted to the practical in vivo use of fiber-based biosensors, covering regulatory, sterilization, and packaging aspects. Finally, the trends and required improvements in this promising and emerging field are analyzed and discussed.


Asunto(s)
Técnicas Biosensibles , Fibras Ópticas , Interferometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA