Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
2.
BMC Complement Med Ther ; 24(1): 69, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38302935

BACKGROUND: Litsea glutinosa (Lour.) C. B. Rob. belongs to the Litsea genus and is categorized under the family of Lauraceae. The study aimed to investigate the phytoconstituents and pharmacological properties of methanol extract of leaves of Litsea glutinosa, focusing on antidiabetic activity via in vivo and in silico techniques. METHODS: Extensive chromatographic and spectroscopic techniques were applied to isolate and characterize the constituents from the L. glutinosa plant species. The antidiabetic activity was studied in streptozotocin-induced diabetes mice, and the computational study of the isolated compounds was carried out by utilizing AutoDock Vina programs. In addition, the pharmacokinetic properties in terms of absorption, distribution, metabolism and excretion (ADME) and toxicological profiles of the isolated compounds were examined via in silico techniques. RESULTS: In the present study, two flavonoid glycosides 4΄-O-methyl (2 ̋,4 ̋-di-E-p-coumaroyl) afzelin (1) and quercetin 3-O-(2 ̋,4 ̋-di-E-p-coumaroyl)-α-L-rhamnopyranoside (2) were isolated from the leaves of L. glutinosa and characterized by 1H and 13C NMR, COSY, HSQC, HMBC, and mass spectral data. Although compounds 1 and 2 have been reported twice from Machilis litseifolia and Lindera akoensis, and Machilis litseifolia and Mammea longifolia, respectively, this is the first report of this isolation from a Litsea species. Administering the methanolic extract of L. glutinosa at doses of 300 and 500 mg/kg/day to mice with diabetes induced by streptozotocin led to a significant decrease in fasting blood glucose levels (p < 0.05) starting from the 7th day of treatment. Besides, the computational study and PASS analysis endorsed the current in vivo findings that the both isolated compounds exerted higher binding affinities to human pancreatic α-amylase and aldose reductase than the conventional drugs. The in silico ADMET analysis revealed that the both isolated compounds have a favorable pharmacokinetic and safety profile suitable for human consumption. CONCLUSION: According to the current outcomes obtained from in vivo and in silico techniques, the leaf extract of L. glutinosa could be a natural remedy for treating diabetes, and the isolated phytoconstituents could be applied against various illnesses, mainly hyperglycemia. However, more investigations are required for extensive phytochemical isolation and pharmacological activities of these phytoconstituents against broader targets with exact mechanisms of action.


Diabetes Mellitus , Litsea , Humans , Animals , Mice , Flavonoids/chemistry , Glycosides/pharmacology , Litsea/chemistry , Hypoglycemic Agents/pharmacology , Streptozocin
3.
Environ Sci Pollut Res Int ; 29(31): 46527-46550, 2022 Jul.
Article En | MEDLINE | ID: mdl-35507224

COVID-19, which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread over the world, posing a global health concern. The ongoing epidemic has necessitated the development of novel drugs and potential therapies for patients infected with SARS-CoV-2. Advances in vaccination and medication development, no preventative vaccinations, or viable therapeutics against SARS-CoV-2 infection have been developed to date. As a result, additional research is needed in order to find a long-term solution to this devastating condition. Clinical studies are being conducted to determine the efficacy of bioactive compounds retrieved or synthesized from marine species starting material. The present study focuses on the anti-SARS-CoV-2 potential of marine-derived phytochemicals, which has been investigated utilizing in in silico, in vitro, and in vivo models to determine their effectiveness. Marine-derived biologically active substances, such as flavonoids, tannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, and lipids, can affect SARS-CoV-2 during the viral particle's penetration and entry into the cell, replication of the viral nucleic acid, and virion release from the cell; they can also act on the host's cellular targets. COVID-19 has been proven to be resistant to several contaminants produced from marine resources. This paper gives an overview and summary of the various marine resources as marine drugs and their potential for treating SARS-CoV-2. We discussed at numerous natural compounds as marine drugs generated from natural sources for treating COVID-19 and controlling the current pandemic scenario.


COVID-19 , Antiviral Agents/chemistry , Humans , Pandemics , SARS-CoV-2
5.
Environ Sci Pollut Res Int ; 28(30): 40515-40532, 2021 Aug.
Article En | MEDLINE | ID: mdl-34036497

The world has never been prepared for global pandemics like the COVID-19, currently posing an immense threat to the public and consistent pressure on the global healthcare systems to navigate optimized tools, equipments, medicines, and techno-driven approaches to retard the infection spread. The synergized outcome of artificial intelligence paradigms and human-driven control measures elicit a significant impact on screening, analysis, prediction, and tracking the currently infected individuals, and likely the future patients, with precision and accuracy, generating regular international and national data on confirmed, recovered, and death cases, as the current status of 3,820,869 infected patients worldwide. Artificial intelligence is a frontline concept, with time-saving, cost-effective, and productive access to disease management, rendering positive results in physician assistance in high workload conditions, radiology imaging, computational tomography, and database formulations, to facilitate availability of information accessible to researchers all over the globe. The review tends to elaborate the role of industry 4.0 technology, fast diagnostic procedures, and convolutional neural networks, as artificial intelligence aspects, in potentiating the COVID-19 management criteria and differentiating infection in SARS-CoV-2 positive and negative groups. Therefore, the review successfully supplements the processes of vaccine development, disease management, diagnosis, patient records, transmission inhibition, social distancing, and future pandemic predictions, with artificial intelligence revolution and smart techno processes to ensure that the human race wins this battle with COVID-19 and many more combats in the future.


COVID-19 , Communicable Diseases , Artificial Intelligence , Humans , Pandemics , SARS-CoV-2
6.
CNS Neurol Disord Drug Targets ; 20(5): 430-450, 2021.
Article En | MEDLINE | ID: mdl-33602109

Aging is an important stage of the human life cycle and the primary risk factor for Neurodegenerative Diseases (ND). The aging process contributes to modifications in cells, which may lead to a lack of nutrient signaling, disrupted cellular activity, increased oxidative pressure, cell homeostasis depletion, genomic instability, misfolded protein aggregation, impaired cellular protection, and telomere reduction. The neuropathologies found in Alzheimer's Disease (AD) and Parkinson's Disease (PD) are internally and extrinsically compound environmental stressors which may be partially alleviated by using different phytochemicals. The new therapies for ND are restricted as they are primarily targeted at final disease progression, including behavioral shifts, neurological disorders, proteinopathies and neuronal failure. This review presents the role of phytochemicals-related polyphenolic compounds as an accompanying therapy model to avoid neuropathologies linked to AD, PD and to simultaneously enhance two stochastic stressors, namely inflammation and oxidative stress, promoting their disease pathologies. Therefore, this approach represents a prophylactic way to target risk factors that rely on their action against ND that does not occur through current pharmacological agents over the life of a person.


Neurodegenerative Diseases/drug therapy , Polyphenols/therapeutic use , Aging/physiology , Alzheimer Disease/drug therapy , Female , Homeostasis , Humans , Male , Oxidative Stress/physiology , Parkinson Disease/drug therapy , Phytochemicals/therapeutic use , Prospective Studies
7.
Front Pharmacol ; 11: 563478, 2020.
Article En | MEDLINE | ID: mdl-33178016

At the end of 2019, a novel coronavirus (CoV) was found at the seafood market of Hubei province in Wuhan, China, and this virus was officially named coronavirus diseases 2019 (COVID-19) by World Health Organization (WHO). COVID-19 is mainly characterized by severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) and creates public health concerns as well as significant threats to the economy around the world. Unfortunately, the pathogenesis of COVID-19 is unclear and there is no effective treatment of this newly life-threatening and devastating virus. Therefore, it is crucial to search for alternative methods that alleviate or inhibit the spread of COVID-19. In this review, we try to find out the etiology, epidemiology, symptoms as well as transmissions of this novel virus. We also summarize therapeutic interventions and suggest antiviral treatments, immune-enhancing candidates, general supplements, and CoV specific treatments that control replication and reproduction of SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV).

8.
Oxid Med Cell Longev ; 2020: 5086250, 2020.
Article En | MEDLINE | ID: mdl-32509144

Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes chronic cognitive dysfunction. Most of the AD cases are late onset, and the apolipoprotein E (APOE) isoform is a key genetic risk factor. The APOE gene has 3 key alleles in humans including APOE2, APOE3, and APOE4. Among them, APOE4 is the most potent genetic risk factor for late-onset AD (LOAD), while APOE2 has a defensive effect. Research data suggest that APOE4 leads to the pathogenesis of AD through various processes such as accelerated beta-amyloid aggregations that raised neurofibrillary tangle formation, cerebrovascular diseases, aggravated neuroinflammation, and synaptic loss. However, the precise mode of actions regarding in what way APOE4 leads to AD pathology remains unclear. Since APOE contributes to several pathological pathways of AD, targeting APOE4 might serve as a promising strategy for the development of novel drugs to combat AD. In this review, we focus on the recent studies about APOE4-targeted therapeutic strategies that have been advanced in animal models and are being prepared for use in humans for the management of AD.


Alzheimer Disease/metabolism , Apolipoprotein E4/metabolism , Neurofibrillary Tangles/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Animals , Apolipoprotein E4/antagonists & inhibitors , Apolipoprotein E4/genetics , Genetic Predisposition to Disease , Humans , Molecular Targeted Therapy , Polymorphism, Genetic , Protein Folding
9.
Sci Total Environ ; 725: 138313, 2020 Jul 10.
Article En | MEDLINE | ID: mdl-32464743

Neurodegeneration is the progressive loss of neuronal structures and functions that lead to copious disorders like Alzheimer's (AD), Parkinson's (PD), Huntington's (HD), amyotrophic lateral sclerosis (ALS), and other less recurring diseases. Aging is the prime culprit for most neurodegenerative events. Moreover, the shared pathogenic factors of many neurodegenerative processes are inflammatory responses and oxidative stress (OS). Unfortunately, it is very complicated to treat neurodegeneration and there is no effective remedy. The rapid progression of the neurodegenerative diseases that exacerbate the burden and the concurrent absence of effective treatment strategies force the researchers to investigate more therapeutic approaches that ultimately target the causative factors of the neurodegeneration. Phytochemicals have great potential to exert their neuroprotective effects by targeting various mechanisms, such as OS, neuroinflammation, abnormal protein aggregation, neurotrophic factor deficiency, disruption in mitochondrial function, and apoptosis. Therefore, this review represents the molecular mechanisms of neuroprotection by multifunctional phytochemicals to combat age-linked neurodegenerative disorders.


Neurodegenerative Diseases , Neuroprotective Agents , Humans , Mitochondria , Oxidative Stress , Phytochemicals
10.
Pak J Biol Sci ; 15(14): 666-72, 2012 Jul 15.
Article En | MEDLINE | ID: mdl-24171247

The successful use of Ayurvedic medicines is for many years but there is no guideline for studying the toxicity of these preparations through preclinical or clinical investigations. The present study was conducted to evaluate the effect of conventionally prepared Sulavajrini Vatika (SBB), an Ayurvedic formulation on various biochemical parameters of experimental animals after chronic administration. The animal used was albino rats (Rattus norvegicus: Sprague-Dawley strain) and SBB was administered orally at a single dose of 100 mg kg(-1) b.wt. day(-1), up to 62 days. During the study, forty rats, equally of both sexes, were randomly grouped into four where one male and one female group were used as control and other groups were used as test. Among the lipid components, Triglyceride (TG) was decreased very high significantly in both sexes of animal. The decrease of Total Cholesterol (TC), Very Low Density Lipoprotein (VLDL) and high-density lipoprotein (HDL) were also highly significant. Low Density Lipoprotein (LDL) decreased in all SBB treated group. In the liver function parameters, the total protein and albumin content were increased very high significantly in both sexes of rat. But the bilirubin was decreased insignificantly in male and female rats. Serum Glutamic Pyruvic Transaminase (GPT), Glutamic Oxaloacetic Transaminase (GOT) and Alkaline Phosphatase (ALP) were decreased in all treated animals and it was very high significant. In case of kidney function parameters, creatinine was increased very high significantly but the urea was decreased very high significantly in both sexes of rat. The decrease in uric acid was not significant in none of the sexes of rat. The present study confirms that SBB can be contributory for the complications in diabetics with hyperlipidemia and nephropathy as it lowers most of the lipids components and improves liver function and kidney function parameters.


Kidney/drug effects , Lipids/blood , Liver/drug effects , Medicine, Ayurvedic , Plant Preparations/therapeutic use , Plasma/metabolism , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cholesterol/blood , Cholesterol/metabolism , Female , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Lipoproteins, VLDL/blood , Liver Function Tests , Male , Plant Preparations/administration & dosage , Rats , Rats, Sprague-Dawley , Triglycerides/blood , Urea/metabolism
...