Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(2): 235-244.e3, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38091989

RESUMEN

Migratory landbirds in North America are experiencing dramatic population declines. Although considerable research and conservation attention have been directed toward these birds' breeding and wintering grounds, far less is known about the areas used as stopover sites during migration. To address this knowledge gap, we used 5 years of weather surveillance radar data to map seasonal stopover densities of landbirds across the eastern United States during spring and autumn migration. We identified stopover hotspots covering 2.47 million ha that consistently support high densities of migratory landbirds in spring or autumn. However, only 16.7% of these sites are hotspots in both seasons. The distribution of hotspots is shifted eastward in autumn compared with spring. Deciduous forest is the most important habitat type in both seasons, with deciduous forest fragments embedded in broadly deforested regions having the highest probability of being hotspots. The concentration of birds in these forest fragments is stronger in spring, especially in the agricultural Midwest. We found generally higher stopover densities in protected areas than in unprotected areas in both seasons. Nonetheless, only one-third of identified stopover hotspots have some sort of protected status, and more than half of these protected hotspots are subject to extractive uses. A well-distributed network of well-protected stopover areas, complementing conservation efforts on the breeding and wintering grounds, is essential to sustaining healthy populations of migratory landbirds in North America.


Asunto(s)
Migración Animal , Ecosistema , Animales , Estados Unidos , Estaciones del Año , Tiempo (Meteorología) , Aves
2.
Nat Commun ; 14(1): 7446, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049435

RESUMEN

As billions of nocturnal avian migrants traverse North America, twice a year they must contend with landscape changes driven by natural and anthropogenic forces, including the rapid growth of the artificial glow of the night sky. While airspaces facilitate migrant passage, terrestrial landscapes serve as essential areas to restore energy reserves and often act as refugia-making it critical to holistically identify stopover locations and understand drivers of use. Here, we leverage over 10 million remote sensing observations to develop seasonal contiguous United States layers of bird migrant stopover density. In over 70% of our models, we identify skyglow as a highly influential and consistently positive predictor of bird migration stopover density across the United States. This finding points to the potential of an expanding threat to avian migrants: peri-urban illuminated areas may act as ecological traps at macroscales that increase the mortality of birds during migration.


Asunto(s)
Migración Animal , Contaminación Lumínica , Animales , Estados Unidos , Aves , América del Norte , Telemetría , Estaciones del Año
3.
Proc Natl Acad Sci U S A ; 120(3): e2203511120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623186

RESUMEN

Halting the global decline of migratory birds requires a better understanding of migration ecology. Stopover sites are a crucial yet understudied aspect of bird conservation, mostly due to challenges associated with understanding broad-scale patterns of transient habitat use. Here, we use a national network of weather radar stations to identify stopover hotspots and assess multiscale habitat associations of migratory landbirds across the eastern United States during autumn migration. We mapped seasonal bird densities over 5 y (2015 to 2019) from 60 radar stations covering 63.2 million hectares. At a coarse scale, we found that landbirds migrate across a broad front with small differences in migrant density between radar domains. However, relatively more birds concentrate along the Mississippi River and Appalachian Mountains. At a finer scale, we identified radar pixels that consistently harbored high densities of migrants for all 5 y, which we classify as stopover hotspots. Hotspot probability increased with percent cover of all forest types and decreased with percent cover of pasture and cultivated crops. Moreover, we found strong concentrating effects of deciduous forest patches within deforested regions. We also found that the prairie biome in the Midwest (now mostly cropland) is likely a migration barrier, with large concentrations of migrants at the prairie-forest boundary after crossing the agricultural Midwest. Overall, the broad-front migration pattern highlights the importance of locally based conservation efforts to protect stopover habitats. Such efforts should target forests, especially deciduous forests in highly altered landscapes. These findings demonstrate the value of multiscale habitat assessments for the conservation of migratory landbirds.


Asunto(s)
Migración Animal , Ecosistema , Animales , Estados Unidos , Estaciones del Año , Bosques , Aves , Mississippi
4.
Integr Comp Biol ; 61(3): 1216-1236, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34240165

RESUMEN

Artificial light at night (ALAN) on tall or upward-pointed lighting installations affects the flight behavior of night-migrating birds. We hypothesized that common low-rise lights pointing downward also affect the movement of nocturnal migrants. We predicted that birds in flight will react close to low-rise lights, and be attracted and grounded near light sources, with a stronger effect on juveniles during their autumn migration. We conducted a controlled longitudinal experiment with light-emitting diode floodlights and considered nearby structures that turn on lights at night. We analyzed 1501 high-resolution 3D nocturnal flight paths of free-flying migrants and diurnally captured 758-2009 birds around experimental lights during spring and autumn 2016, and spring 2017. We identified change points along flight paths where birds turned horizontally or vertically, and we considered these indicative of reactions. Flight paths with and without reactions were generally closer to our experimental site in spring than in autumn when the lights were on. Reactions were up to 40% more likely to occur in autumn than in spring depending on the threshold magnitude of turning angle. Reactions in spring were up to ∼60% more likely to occur at ∼35 m from the lights than at >1.5 km. In autumn, some vertical reactions were ∼40% more likely to occur at ∼50 m from the lights than at >2.2 km. Interactions between distance to lights and visibility or cloud cover were consistent with known effects of ALAN on nocturnal migrants. Under poor visibility, reactions were up to 50% more likely to occur farthest from structures in spring, but up to 60% more likely to occur closest to lights in autumn. Thus, the effects of ALAN on night-migrating land birds are not limited to bright lights pointing upward or lights on tall structures in urban areas. Diurnal capture rates of birds were not different when lights were on or off for either season. To our knowledge, this is the first study to show that low-rise lights pointing downward affect night-migrating birds. Although the interpreted reactions constitute subtle modifications in the linearity of flight paths, we discuss future work that could verify whether the protection of nocturnal migrants with lights-out programs would have greater impact if implemented beyond urban areas and include management of low-rise lights.


Asunto(s)
Migración Animal , Aves , Iluminación , Animales , Estaciones del Año
5.
Ecol Lett ; 24(1): 38-49, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33026159

RESUMEN

Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover-to-passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south-eastern US, the most prominent corridor for North America's migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.


Asunto(s)
Migración Animal , Aves , Animales , Ecosistema , Estaciones del Año , Tiempo (Meteorología)
6.
Transbound Emerg Dis ; 68(1): 98-109, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32592444

RESUMEN

Migratory waterfowl, including geese and ducks, are indicated as the primary reservoir of avian influenza viruses (AIv) which can be subsequently spread to commercial poultry. The US Department of Agriculture's (USDA) surveillance efforts of waterfowl for AIv have been largely discontinued in the contiguous United States. Consequently, the use of technologies to identify areas of high waterfowl density and detect the presence of AIv in habitat such as wetlands has become imperative. Here we identified two high waterfowl density areas in California using processed NEXt generation RADar (NEXRAD) and collected water samples to test the efficacy of two tangential flow ultrafiltration methods and two nucleic acid based AIv detection assays. Whole-segment amplification and long-read sequencing yielded more positive samples than standard M-segment qPCR methods (57.6% versus 3.0%, p < .0001). We determined that this difference in positivity was due to mismatches in published primers to our samples and that these mismatches would result in failing to detect in the vast majority of currently sequenced AIv genomes in public databases. The whole segment sequences were subsequently used to provide subtype and potential host information of the AIv environmental reservoir. There was no statistically significant difference in sequencing reads recovered from the RexeedTM filtration compared to the unfiltered surface water. This overall approach combining remote sensing, filtration and sequencing provides a novel and potentially more effective, surveillance approach for AIv.


Asunto(s)
Patos , Filtración/veterinaria , Gansos , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Tecnología de Sensores Remotos , Animales , Animales Salvajes , California , Filtración/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Humedales
7.
J Anim Ecol ; 88(12): 1873-1887, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31330569

RESUMEN

Urban areas affect terrestrial ecological processes and local weather, but we know little about their effect on aerial ecological processes. Here, we identify urban from non-urban areas based on the intensity of artificial light at night (ALAN) in the landscape, and, along with weather covariates, evaluate the effect of urbanization on flight altitudes of nocturnally migrating birds. Birds are attracted to ALAN; hence, we predicted that altitudes would be lower over urban than over non-urban areas. However, other factors associated with urbanization may also affect flight altitudes. For example, surface temperature and terrain roughness are higher in urban areas, increasing air turbulence and height of the boundary layer, and affecting local winds. We used data from nine weather surveillance radars in the eastern United States to estimate altitudes at five quantiles of the vertical distribution of birds migrating at night over urban and non-urban areas during five consecutive spring and autumn migration seasons. We fit Generalized Linear Mixed Models by season for each of the five quantiles of bird flight altitude and their differences between urban and non-urban areas. After controlling for other environmental variables and contrary to our prediction, we found that birds generally fly higher over urban areas compared to rural areas in spring, and marginally higher at the mid-layers of the vertical distribution in autumn. We also identified a small interaction effect between urbanization and crosswind speed, and between urbanization and surface air temperature, on flight altitudes. We also found that the difference in flight altitudes of nocturnally migrating birds between urban and non-urban areas varied among radars and seasons, but was consistently higher over urban areas throughout the years sampled. Our results suggest that the effects of urbanization on wildlife extend into the aerosphere and are complex, stressing the need of understanding the influence of anthropogenic factors on airspace habitat.


Asunto(s)
Altitud , Migración Animal , Animales , Aves , Vuelo Animal , Tiempo (Meteorología) , Viento
8.
Glob Chang Biol ; 25(3): 1106-1118, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30623528

RESUMEN

Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995-2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007-2015) or the annual timing of peak migration (1995-2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade-1 ). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger-bodied shorter-distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.


Asunto(s)
Migración Animal , Aves/fisiología , Animales , Golfo de México , Estaciones del Año , Temperatura , Tiempo (Meteorología)
9.
Mov Ecol ; 6: 17, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30151198

RESUMEN

BACKGROUND: Persistent declines in migratory songbird populations continue to motivate research exploring contributing factors to inform conservation efforts. Nearctic-Neotropical migratory species' population declines have been linked to habitat loss and reductions in habitat quality due to increasing urbanization in areas used throughout the annual cycle. Despite an increase in the number of studies on post-fledging ecology, generally characterized by the period between fledging and dispersal from natal areas or migration, contextual research linking post-fledging survival and habitat use to anthropogenic factors remains limited. METHODS: Here, we examined habitat use of post-fledging habitat-generalist gray catbirds (Dumetella caroliniensis), and habitat-specialist wood thrushes (Hylocichla mustelina), up to 88 days after fledging within an urbanized landscape. These Neotropical migratory species share many life-history traits, exhibit differential degrees of habitat specialization, and co-occur in urbanized landscapes. Starting from daily movement data, we used time-integrated Brownian bridges to generate probability density functions of each species' probability of occurrence, and home range among 16 land cover classes including roads from the US Geological Survey National Land Cover Database for each species. RESULTS: Habitat use differed between pre- and post-independence periods. After controlling for factors that influence habitat use (i.e., pre- or post-independence period, fate (whether individuals survived or not), and land cover class), we found that wood thrushes occupied home ranges containing six times more forest land cover than catbirds. In contrast, catbirds occupied home ranges containing twice the area of roads compared to wood thrushes. Wood thrushes had greater variance for area used (km2) among land cover classes within home ranges compared to catbirds. However, once fledglings achieved independence from parents, wood thrushes had lower variance associated with area used compared to catbirds. CONCLUSIONS: Our findings support predictions that habitat-generalist gray catbirds spend more time in developed areas, less time in forest habitat, and use areas with more roads than the forest-specialist wood thrush. We found strong effects of pre- and post-independence periods on all of the response variables we tested. Species-specific habitat use patterns will likely be affected by projected increases in urbanization over the next several decades leading to further reductions in available forest habitat and increased road density, and will have important implications for the ecology and conservation of these birds.

10.
Sci Rep ; 8(1): 4799, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540780

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

11.
Sci Rep ; 8(1): 3261, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29459760

RESUMEN

Excessive or misdirected artificial light at night (ALAN) produces light pollution that influences several aspects of the biology and ecology of birds, including disruption of circadian rhythms and disorientation during flight. Many migrating birds traverse large expanses of land twice every year at night when ALAN illuminates the sky. Considering the extensive and increasing encroachment of light pollution around the world, we evaluated the association of the annual mean ALAN intensity over land within the geographic ranges of 298 nocturnally migrating bird species with five factors: phase of annual cycle, mean distance between breeding and non-breeding ranges, range size, global hemisphere of range, and IUCN category of conservation concern. Light pollution within geographic ranges was relatively greater during the migration season, for shorter-distance migrants, for species with smaller ranges, and for species in the western hemisphere. Our results suggest that migratory birds may be subject to the effects of light pollution particularly during migration, the most critical stage in their annual cycle. We hope these results will spur further research on how light pollution affects not only migrating birds, but also other highly mobile animals throughout their annual cycle.


Asunto(s)
Migración Animal , Aves/fisiología , Oscuridad , Contaminación Ambiental , Iluminación , Animales , Geografía
12.
Ecol Lett ; 21(3): 356-364, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29316091

RESUMEN

With many of the world's migratory bird populations in alarming decline, broad-scale assessments of responses to migratory hazards may prove crucial to successful conservation efforts. Most birds migrate at night through increasingly light-polluted skies. Bright light sources can attract airborne migrants and lead to collisions with structures, but might also influence selection of migratory stopover habitat and thereby acquisition of food resources. We demonstrate, using multi-year weather radar measurements of nocturnal migrants across the northeastern U.S., that autumnal migrant stopover density increased at regional scales with proximity to the brightest areas, but decreased within a few kilometers of brightly-lit sources. This finding implies broad-scale attraction to artificial light while airborne, impeding selection for extensive forest habitat. Given that high-quality stopover habitat is critical to successful migration, and hindrances during migration can decrease fitness, artificial lights present a potentially heightened conservation concern for migratory bird populations.


Asunto(s)
Migración Animal , Aves , Luz , Animales , Ecosistema , Planificación Ambiental , Tiempo (Meteorología)
13.
Parasit Vectors ; 11(1): 54, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29361971

RESUMEN

BACKGROUND: Forests in urban landscapes differ from their rural counterparts in ways that may alter vector-borne disease dynamics. In urban forest fragments, tick-borne pathogen prevalence is not well characterized; mitigating disease risk in densely-populated urban landscapes requires understanding ecological factors that affect pathogen prevalence. We trapped blacklegged tick (Ixodes scapularis) nymphs in urban forest fragments on the East Coast of the United States and used multiplex real-time PCR assays to quantify the prevalence of four zoonotic, tick-borne pathogens. We used Bayesian logistic regression and WAIC model selection to understand how vegetation, habitat, and landscape features of urban forests relate to the prevalence of B. burgdorferi (the causative agent of Lyme disease) among blacklegged ticks. RESULTS: In the 258 nymphs tested, we detected Borrelia burgdorferi (11.2% of ticks), Borrelia miyamotoi (0.8%) and Anaplasma phagocytophilum (1.9%), but we did not find Babesia microti (0%). Ticks collected from forests invaded by non-native multiflora rose (Rosa multiflora) had greater B. burgdorferi infection rates (mean = 15.9%) than ticks collected from uninvaded forests (mean = 7.9%). Overall, B. burgdorferi prevalence among ticks was positively related to habitat features (e.g. coarse woody debris and total understory cover) favorable for competent reservoir host species. CONCLUSIONS: Understory structure provided by non-native, invasive shrubs appears to aggregate ticks and reservoir hosts, increasing opportunities for pathogen transmission. However, when we consider pathogen prevalence among nymphs in context with relative abundance of questing nymphs, invasive plants do not necessarily increase disease risk. Although pathogen prevalence is greater among ticks in invaded forests, the probability of encountering an infected tick remains greater in uninvaded forests characterized by thick litter layers, sparse understories, and relatively greater questing tick abundance in urban landscapes.


Asunto(s)
Borrelia burgdorferi/aislamiento & purificación , Especies Introducidas , Ixodes/parasitología , Enfermedad de Lyme/epidemiología , Rosa , Anaplasma phagocytophilum , Animales , Babesia microti/genética , Babesia microti/aislamiento & purificación , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidad , Reservorios de Enfermedades/parasitología , Ecosistema , Bosques , Enfermedad de Lyme/parasitología , Enfermedad de Lyme/transmisión , Reacción en Cadena de la Polimerasa Multiplex , Ninfa/genética , Ninfa/fisiología , Prevalencia , Factores de Riesgo , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/parasitología , Enfermedades por Picaduras de Garrapatas/transmisión , Estados Unidos/epidemiología , Urbanización
14.
Oecologia ; 185(2): 205-212, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28852874

RESUMEN

Migrating birds are under selective pressure to complete long-distance flights quickly and efficiently. Wing morphology and body mass influence energy expenditure of flight, such that certain characteristics may confer a greater relative advantage when making long crossings over ecological barriers by modifying the flight range or speed. We explored the possibility, among light (mass <50 g) migrating passerines, that species with relatively poorer flight performance related to wing shape and/or body mass have a lower margin for error in dealing with the exigencies of a long water crossing across the Gulf of Mexico and consequently minimize their travel time or distance. We found that species-mean fat-free body mass and wing tip pointedness independently explained variability among species distributions within ~50 km from the northern coast. In both spring and autumn, lighter (i.e., slower flying) species and species with more rounded wings were concentrated nearest the coastline. Our results support the idea that morphology helps to shape broad-scale bird distributions along an ecological barrier and that migration exerts some selective force on passerine morphology. Furthermore, smaller species with less-efficient flight appear constrained to stopping over in close proximity to ecological barriers, illustrating the importance of coastal habitats for small passerine migrants.


Asunto(s)
Migración Animal , Aves/anatomía & histología , Aves/fisiología , Alas de Animales/anatomía & histología , Animales , Biodiversidad , Pesos y Medidas Corporales , Ecosistema , Metabolismo Energético , Golfo de México , Alas de Animales/fisiología
15.
Glob Chang Biol ; 23(11): 4609-4619, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28695706

RESUMEN

The spatial extent and intensity of artificial light at night (ALAN) has increased worldwide through the growth of urban environments. There is evidence that nocturnally migrating birds are attracted to ALAN, and there is evidence that nocturnally migrating bird populations are more likely to occur in urban areas during migration, especially in the autumn. Here, we test if urban sources of ALAN are responsible, at least in part, for these observed urban associations. We use weekly estimates of diurnal occurrence and relative abundance for 40 nocturnally migrating bird species that breed in forested environments in North America to assess how associations with distance to urban areas and ALAN are defined across the annual cycle. Migratory bird populations presented stronger than expected associations with shorter distances to urban areas during migration, and stronger than expected association with higher levels of ALAN outside and especially within urban areas during migration. These patterns were more pronounced during autumn migration, especially within urban areas. Outside of the two migration periods, migratory bird populations presented stronger than expected associations with longer distances to urban areas, especially during the nonbreeding season, and weaker than expected associations with the highest levels of ALAN outside and especially within urban areas. These findings suggest that ALAN is associated with higher levels of diurnal abundance along the boundaries and within the interior of urban areas during migration, especially in the autumn when juveniles are undertaking their first migration journey. These findings support the conclusion that urban sources of ALAN can broadly effect migratory behavior, emphasizing the need to better understand the implications of ALAN for migratory bird populations.


Asunto(s)
Migración Animal , Aves/fisiología , Luz , Animales , Contaminación Ambiental , América del Norte , Estaciones del Año
16.
Ecosphere ; 7(3)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27088044

RESUMEN

Nonnative, invasive shrubs can affect human disease risk through direct and indirect effects on vector populations. Multiflora rose (Rosa multiflora) is a common invader within eastern deciduous forests where tick-borne disease (e.g. Lyme disease) rates are high. We tested whether R. multiflora invasion affects blacklegged tick (Ixodes scapularis) abundance, and at what scale. We sampled host-seeking ticks at two spatial scales: fine-scale, within R. multiflora-invaded forest fragments; and patch scale, among R. multiflora-invaded and R. multiflora-free forest fragments. At a fine scale, we trapped 2.3 times more ticks under R. multiflora compared to paired traps 25 m away from R. multiflora. At the patch scale, we trapped 3.2 times as many ticks in R. multiflora-free forests compared to R. multiflora-invaded forests. Thus, ticks are concentrated beneath R. multiflora within invaded forests, but uninvaded forests support significantly more ticks. Among all covariates tested, leaf litter volume was the best predictor of tick abundance; at the patch scale, R. multiflora-invaded forests had less leaf litter than uninvaded forests. We suggest that leaf litter availability at the patch-scale plays a greater role in constraining tick abundance than the fine-scale, positive effect of invasive shrubs.

17.
Mov Ecol ; 4: 1, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26753094

RESUMEN

BACKGROUND: Daily magnitudes and fluxes of landbird migration are often measured via nocturnal traffic rates aloft or diurnal densities within terrestrial habitats during stopover. However, these measures are not consistently correlated and at times reveal opposing trends. For this reason we sought to determine how comparison methods (daily magnitude or daily flux), nocturnal monitoring tools (weather surveillance radar, WSR; thermal imaging, TI), and temporal scale (preceding or following diurnal sampling) influenced correlation strength from stopover densities estimated by daily transect counts. We quantified nocturnal traffic rates at two temporal scales; averaged across the entire night and within individual decile periods of the night, and at two spatial scales; within 1 km of airspace surrounding the site via WSR and directly overhead within the narrow beam of a TI. RESULTS: Overall, the magnitude of daily bird density during stopover was positively related to the magnitude of broad-scale radar traffic rates of migrants on preceding and following nights during both the spring and fall. These relationships were strongest on the following night, and particularly from measures early in the night. Only during the spring on the following nights did we find positive correlations between the daily flux of transect counts and migration traffic rates (both WSR and TI). This indicates that our site likely had a more consistent daily turnover of migrants compared to the fall. The lack of general correlations between seasonal trends or daily flux in fine-scale TI traffic rates and stopover densities across or within nights was unexpected and likely due to poor sampling of traffic rates due to the camera's narrow beam. CONCLUSIONS: The order (preceding or following day) and metric of comparisons (magnitude or flux), as well as the tool (WSR or TI) used for monitoring nocturnal migration traffic can have dramatic impacts when compared with ground-based estimates of migrant density. WSR provided measures of the magnitude and daily flux in nocturnal migration traffic rates that related to daily stopover counts of migrants during spring and fall. Relationships among migrating bird flux measures are more complex than simple measures of magnitude of migration. Care should be given to address these complexities when comparing data among methods.

18.
Ecol Appl ; 25(2): 390-401, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26263662

RESUMEN

There are several remote-sensing tools readily available for the study of nocturnally flying animals (e.g., migrating birds), each possessing unique measurement biases. We used three tools (weather surveillance radar, thermal infrared camera, and acoustic recorder) to measure temporal and spatial patterns of nocturnal traffic estimates of flying animals during the spring and fall of 2011 and 2012 in Lewes, Delaware, USA. Our objective was to compare measures among different technologies to better understand their animal detection biases. For radar and thermal imaging, the greatest observed traffic rate tended to occur at, or shortly after, evening twilight, whereas for the acoustic recorder, peak bird flight-calling activity was observed just prior to morning twilight. Comparing traffic rates during the night for all seasons, we found that mean nightly correlations between acoustics and the other two tools were weakly correlated (thermal infrared camera and acoustics, r = 0.004 ± 0.04 SE, n = 100 nights; radar and acoustics, r = 0.14 ± 0.04 SE, n = 101 nights), but highly variable on an individual nightly basis (range = -0.84 to 0.92, range = -0.73 to 0.94). The mean nightly correlations between traffic rates estimated by radar and by thermal infrared camera during the night were more strongly positively correlated (r = 0.39 ± 0.04 SE, n = 125 nights), but also were highly variable for individual nights (range = -0.76 to 0.98). Through comparison with radar data among numerous height intervals, we determined that flying animal height above the ground influenced thermal imaging positively and flight call detections negatively. Moreover, thermal imaging detections decreased with the presence of cloud cover and increased with mean ground flight speed of animals, whereas acoustic detections showed no relationship with cloud cover presence but did decrease with increased flight speed. We found sampling methods to be positively correlated when comparing mean nightly traffic rates across nights. The strength of these correlations generally increased throughout the night, peaking 2-3 hours before morning twilight. Given the convergence of measures by different tools at this time, we suggest that researchers consider sampling flight activity in the hours before morning twilight when differences due to detection biases among sampling tools appear to be minimized.


Asunto(s)
Acústica , Aves/fisiología , Ritmo Circadiano , Vuelo Animal/fisiología , Radar , Migración Animal/fisiología , Animales , Delaware , Rayos Infrarrojos , Luz , Factores de Tiempo
19.
PLoS One ; 7(7): e41571, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22911816

RESUMEN

The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998-1999 and 1999-2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998-1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Vuelo Animal/fisiología , Radar , Estaciones del Año , Tiempo (Meteorología) , Animales , California , Patos/fisiología , Geografía , Telemetría
20.
Ecology ; 88(7): 1789-802, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17645025

RESUMEN

Most of our understanding of habitat use by migrating land birds comes from studies conducted at single, small spatial scales, which may overemphasize the importance of intrinsic habitat factors, such as food availability, in shaping migrant distributions. We believe that a multi-scale approach is essential to assess the influence of factors that control en route habitat use. We determined the relative importance of eight variables, each operating at a habitat-patch, landscape, or regional spatial scale, in explaining the differential use of hardwood forests by Nearctic-Neotropical land birds during migration. We estimated bird densities through transect surveys at sites near the Mississippi coast during spring and autumn migration within landscapes with variable amounts of hardwood forest cover. At a regional scale, migrant density increased with proximity to the coast, which was of moderate importance in explaining bird densities, probably due to constraints imposed on migrants when negotiating the Gulf of Mexico. The amount of hardwood forest cover at a landscape scale was positively correlated with arthropod abundance and had the greatest importance in explaining densities of all migrants, as a group, during spring, and of insectivorous migrants during autumn. Among landscape scales ranging from 500 m to 10 km radius, the densities of migrants were, on average, most strongly and positively related to the amount of hardwood forest cover within a 5 km radius. We suggest that hardwood forest cover at this scale may be an indicator of habitat quality that migrants use as a cue when landing at the end of a migratory flight. At the patch scale, direct measures of arthropod abundance and plant community composition were also important in explaining migrant densities, whereas habitat structure was of little importance. The relative amount of fleshy-fruited trees was positively related and was the most important variable explaining frugivorous migrant density during autumn. Although constraints extrinsic to habitat had a moderate role in explaining migrant distributions, our results are consistent with the view that food availability is the ultimate factor shaping the distributions of birds during stopover.


Asunto(s)
Migración Animal , Aves/fisiología , Animales , Cadena Alimentaria , Geografía , Modelos Lineales , Mississippi , Modelos Biológicos , Densidad de Población , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA