Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Int J Environ Health Res ; 31(8): 951-962, 2021 Dec.
Article En | MEDLINE | ID: mdl-31850798

A physiologically based pharmacokinetic (PBPK) model was developed to described uptake, disposition and clearance of bromate in the rat using published experimental data in rat. The rodent bromate model was extrapolated to human using species-specific physiological parameters and standard interspecies scaling of rate constants. The bromate model is kinetically linear (i.e. AUC and Cmax) across the range of drinking water concentrations used in the cancer bioassays (15 to 500 ppm). This is likely the result of the poor oral bioavailability of bromate due to high reduction rates in the intestinal tract. The bromate PBPK model was used to assess the human equivalent drinking water concentration (HEC) consistent with average plasma concentrations in the rodent bioassays. At drinking water concentrations <500 mg/L, the predicted HEC was two to three fold lower than the bioassay concentration and was dependent on the reported drinking water intake reported in the bioassay.


Bromates/pharmacokinetics , Drinking Water/chemistry , Water Pollutants, Chemical/pharmacokinetics , Animals , Biological Availability , Bromates/analysis , Computer Simulation , Dietary Exposure/analysis , Female , Humans , Models, Biological , Rats , Water Pollutants, Chemical/analysis
3.
Bioorg Med Chem Lett ; 23(23): 6248-53, 2013 Dec 01.
Article En | MEDLINE | ID: mdl-24144851

A novel series of muscarinic receptor antagonists was developed, with the aim of identifying a compound with high M3 receptor potency and a reduced risk of dose-limiting side effects with potential for the treatment of COPD. Initial compound modifications led to a novel cycloheptyl series, which was improved by focusing on a quinuclidine sub-series. A wide range of N-substituents was evaluated to determine the optimal substituent providing a high M3 receptor potency, high intrinsic clearance and high human plasma protein binding. Compounds achieving in vitro study criteria were selected for in vivo evaluation. Pharmacokinetic half-lives, inhibition of bronchoconstriction and duration of action, as well as systemic side effects, induced by the compounds were assessed in guinea-pig models. Compounds with a long duration of action and good therapeutic index were identified and AZD8683 was selected for progression to the clinic.


Cycloheptanes/chemistry , Cycloheptanes/pharmacology , Muscarinic Antagonists/administration & dosage , Muscarinic Antagonists/chemistry , Pulmonary Disease, Chronic Obstructive/drug therapy , Administration, Inhalation , Animals , Bronchoconstriction/drug effects , Cycloheptanes/pharmacokinetics , Disease Models, Animal , Guinea Pigs , Humans , Molecular Structure , Muscarinic Antagonists/pharmacokinetics , Receptors, Muscarinic/chemistry , Receptors, Muscarinic/metabolism
4.
Toxicol Appl Pharmacol ; 272(2): 391-8, 2013 Oct 15.
Article En | MEDLINE | ID: mdl-23811332

The water disinfection byproduct bromate (BrO3(-)) produces cytotoxic and carcinogenic effects in rat kidneys. Our previous studies demonstrated that BrO3(-) caused sex-dependent differences in renal gene and protein expression in rats and the elimination of brominated organic carbon in their urine. The present study examined changes in renal cell apoptosis and protein expression in male and female F344 rats treated with BrO3(-) and associated these changes with accumulation of 3-bromotyrosine (3-BT)-modified proteins. Rats were treated with 0, 11.5, 46 and 308 mg/L BrO3(-) in drinking water for 28 days and renal sections were prepared and examined for apoptosis (TUNEL-staining), 8-oxo-deoxyguanosine (8-oxoG), 3-BT, osteopontin, Kim-1, clusterin, and p-21 expression. TUNEL-staining in renal proximal tubules increased in a dose-related manner beginning at 11.5mg BrO3(-)/L in female rats and 46 mg/L in males. Increased 8-oxoG staining was observed at doses as low as 46 mg/L. Osteopontin expression also increased in a dose-related manner after treatment with 46 mg/L, in males only. In contrast, Kim-1 expression increased in a dose-related manner in both sexes, although to a greater extent in females at the highest dose. Clusterin and p21 expression also increased in a dose-related manner in both sexes. The expression of 3-BT-modified proteins only increased in male rats, following a pattern previously reported for accumulation of α-2u-globulin. Increases in apoptosis in renal proximal tubules of male and female rats at the lowest doses suggest a common mode of action for renal carcinogenesis for the two sexes that is independent of α-2u-globulin nephropathy.


Apoptosis/drug effects , Bromates/toxicity , Carcinogens, Environmental/toxicity , Kidney Tubules, Proximal/drug effects , Protein Biosynthesis/drug effects , Tyrosine/analogs & derivatives , Water Pollutants, Chemical/toxicity , Administration, Oral , Animals , Dose-Response Relationship, Drug , Female , Immunohistochemistry , In Situ Nick-End Labeling , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Rats , Rats, Inbred F344 , Sex Characteristics , Tyrosine/biosynthesis
5.
Risk Anal ; 33(12): 2179-208, 2013 Dec.
Article En | MEDLINE | ID: mdl-23786353

Some volatile N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), are recognized as products of drinking water treatment at ng/L levels and as known carcinogens. The U.S. EPA has identified the N-nitrosamines as contaminants being considered for regulation as a group under the Safe Drinking Water Act. Nitrosamines are common dietary components, and a major database (over 18,000 drinking water samples) has recently been created under the Unregulated Contaminant Monitoring Rule. A Monte Carlo modeling analysis in 2007 found that drinking water contributed less than 2.8% of ingested NDMA and less than 0.02% of total NDMA exposure when estimated endogenous formation was considered. Our analysis, based upon human blood concentrations, indicates that endogenous NDMA production is larger than expected. The blood-based estimates are within the range that would be calculated from estimates based on daily urinary NDMA excretion and an estimate based on methylated guanine in DNA of lymphocytes from human volunteers. Our analysis of ingested NDMA from food and water based on Monte Carlo modeling with more complete data input shows that drinking water contributes a mean proportion of the lifetime average daily NDMA dose ranging from between 0.0002% and 0.001% for surface water systems using free chlorine or between 0.001% and 0.01% for surface water systems using chloramines. The proportions of average daily dose are higher for infants (zero to six months) than other age cohorts, with the highest mean up to 0.09% (upper 95th percentile of 0.3%).


Drinking Water/chemistry , Environmental Exposure , Nitrosamines/toxicity , Humans , Volatilization
6.
Bioorg Med Chem Lett ; 23(12): 3592-8, 2013 Jun 15.
Article En | MEDLINE | ID: mdl-23642482

The identification of a novel fused triazolo-pyrrolopyridine scaffold, optimized derivatives of which display nanomolar inhibition of Janus kinase 1, is described. Prototypical example 3 demonstrated lower cell potency shift, better permeability in cells and higher oral exposure in rat than the corresponding, previously reported, imidazo-pyrrolopyridine analogue 2. Examples 6, 7 and 18 were subsequently identified from an optimization campaign and demonstrated modest selectivity over JAK2, moderate to good oral bioavailability in rat with overall pharmacokinetic profiles comparable to that reported for an approved pan-JAK inhibitor (tofacitinib).


Janus Kinase 1/antagonists & inhibitors , Pyridines/pharmacology , Animals , Crystallography, X-Ray , Janus Kinase 1/chemistry , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/chemistry , Kinetics , Models, Molecular , Pyridines/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Rats
7.
Arch Toxicol ; 87(11): 1911-1925, 2013 Nov.
Article En | MEDLINE | ID: mdl-23588252

Bromate (BrO3(-)), a by-product of ozonation of drinking water, induces nephrotoxicity in male rats at much lower doses than in female rats. This difference appears to be related to the development of α-2u-globulin nephropathy in males. To determine sex-dependent changes in mRNA and protein expression in the renal cortex attributable to α-2u-globulin nephropathy, we performed microarray and immunohistochemical analyses in proximal renal tubules of male and female F344 rats treated with KBrO3 for 28 days. Particular attention was paid to molecular biomarkers of renal tubular injury. Microarray analysis of male and female rats treated with BrO3(-) at low doses (125 mg/L KBrO3) displayed marked sex-dependent changes in renal gene expression. The greatest differences were seen in genes encoding for cellular differentiation, apoptosis, ion transport, and cell proliferation. Differences by sex were especially prominent for the cell cycle checkpoint gene p21, the renal injury protein Kim-1, and the kidney injury and cancer biomarker protein osteopontin. Dose-related nephrotoxicity, assessed by hematoxylin and eosin staining, was greater in males compared to female rats, as was cellular proliferation, assessed by bromodeoxyuridine staining. The fraction of proximal renal cells with elevated 8-oxodeoxyguanosine (8-OH-dG) was only increased at the high dose and did not differ by sex. Dose-dependent increases in the expression of osteopontin were detected immunohistochemically only in male rats and were localized in proximal tubule cells. Similarly, BrO3(-) treatment increased clusterin and Kim-1 staining in the proximal tubules; however, staining for these proteins did not differ appreciably between males and females. These data demonstrate both qualitative and quantitative differences in the response of male versus female kidneys to BrO3(-)-treatment. These sex-dependent effects likely contribute to renal carcinogenesis of BrO3(-) in the male rat.


Bromates/toxicity , Kidney Cortex/metabolism , Protein Biosynthesis/drug effects , RNA, Messenger/biosynthesis , 8-Hydroxy-2'-Deoxyguanosine , Animals , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Cell Proliferation/drug effects , Clusterin/biosynthesis , Clusterin/genetics , Deoxyguanosine/analogs & derivatives , Female , Gene Expression/drug effects , Immunohistochemistry , Kidney Cortex/drug effects , Kidney Cortex/pathology , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney Tubules/pathology , Male , Microarray Analysis , Oncogene Protein p21(ras)/biosynthesis , Oncogene Protein p21(ras)/genetics , Osteopontin/biosynthesis , Osteopontin/genetics , Polymerase Chain Reaction , Rats , Rats, Inbred F344
8.
Bioorg Med Chem Lett ; 23(9): 2606-13, 2013 May 01.
Article En | MEDLINE | ID: mdl-23540645

A series of suitable five-membered heterocyclic alternatives to thiophenes within a thienobenzoxepin class of PI3-kinase (PI3K) inhibitors was discovered. Specific thiazolobenzoxepin 8-substitution was identified that increased selectivity over PI3Kß. PI3Kß-sparing compound 27 (PI3Kß Ki,app/PI3Kα Ki,app=57) demonstrated dose-dependent knockdown of pAKT, pPRAS40 and pS6RP in vivo as well as differential effects in an in vitro proliferation cell line screen compared to pan PI3K inhibitor GDC-0941. A new structure-based hypothesis for reducing inhibition of the PI3K ß isoform while maintaining activity against α, δ and γ isoforms is presented.


Benzoxepins/chemistry , Enzyme Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors , Thiazoles/chemistry , Benzoxepins/chemical synthesis , Benzoxepins/pharmacology , Binding Sites , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , MCF-7 Cells , Molecular Docking Simulation , Phosphatidylinositol 3-Kinase/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/metabolism , Structure-Activity Relationship
9.
Toxicology ; 300(1-2): 83-91, 2012 Oct 09.
Article En | MEDLINE | ID: mdl-22699156

Bromate (BrO(3)(-)) is a ubiquitous by-product of using ozone to disinfect water containing bromide (Br(-)). The reactivity of BrO(3)(-) with biological reductants suggests that its systemic absorption and distribution to target tissues may display non-linear behavior as doses increase. The intent of this study is to determine the extent to which BrO(3)(-) is systemically bioavailable via oral exposure and broadly identify its pathways of degradation. In vitro experiments of BrO(3)(-) degradation in rat blood indicate a rapid initial degradation immediately upon addition that is >98% complete at concentrations up to 66µM in blood. As initial concentrations are increased, progressively lower fractions are lost prior to the first measurement. Secondary to this initial loss, a slower and predictable first order degradation rate was observed (10%/min). Losses during both phases were accompanied by increases in Br(-) concentrations indicating that the loss of BrO(3)(-) was due to its reduction. In vivo experiments were conducted using doses of BrO(3)(-) ranging from 0.077 to 15.3mg/kg, administered intravenously (IV) or orally (gavage) to female F344 rats. The variable nature and uncertain source of background concentrations of BrO(3)(-) limited derivation of terminal half-lives, but the initial half-life was approximately 10min for all dose groups. The area under the curve (AUC) and peak concentrations (C(t=5')) were linearly related to IV dose up to 0.77mg/kg; however, disproportionate increases in the AUC and C(t=5') and a large decrease in the volume of distribution was observed when IV doses of 1.9 and 3.8mg/kg were administered. The average terminal half-life of BrO(3)(-) from oral administration was 37min, but this was influenced by background levels of BrO(3)(-) at lower doses. With oral doses, the AUC and C(max) increased linearly with dose up to 15.3mgBrO(3)(-)/kg. BrO(3)(-) appeared to be 19-25% bioavailable without an obvious dose-dependency between 0.077 and 1.9mg/kg. The urinary elimination of BrO(3)(-) and Br(-) was measured from female F344 rats for four days following administration of single doses of 8.1mgKBrO(3)/kg and for 15 days after a single dose of 5.0mgKBr/kg. BrO(3)(-) elimination was detected over the first 12h, but Br(-) elimination from BrO(3)(-) over the first 48h was 18% lower than expected based on that eliminated from an equimolar dose of Br(-) (15.5±1.6 vs. 18.8±1.2µmol/kg, respectively). The cumulative excretion of Br(-) from KBr vs. KBrO(3) was equivalent 72h after administration. The recovery of unchanged administered BrO(3)(-) in the urine ranged between 6.0 and 11.3% (creatinine corrected) on the 27th day of treatment with concentrations of KBrO(3) of 15, 60, and 400mg/L of drinking water. The recovery of total urinary bromine as Br(-)+BrO(3)(-) ranged between 61 and 88%. An increase in the fraction of the daily BrO(3)(-) dose recovered in the urine was observed at the high dose to both sexes. The deficit in total bromine recovery raises the possibility that some brominated biochemicals may be produced in vivo and more slowly metabolized and eliminated. This was supported by measurements of dose-dependent increases of total organic bromine (TOBr) that was eliminated in the urine. The role these organic by-products play in BrO(3)(-)-induced cancer remains to be established.


Bromates/pharmacokinetics , Absorption , Administration, Oral , Animals , Bromates/blood , Bromates/urine , Dose-Response Relationship, Drug , Female , Half-Life , Rats , Rats, Inbred F344/metabolism
10.
Water Res ; 46(14): 4351-60, 2012 Sep 15.
Article En | MEDLINE | ID: mdl-22739498

Consumption of chlorinated drinking water has shown somewhat consistent association with increased risk of bladder cancer in a series of epidemiological studies, but plausible causative agents have not been identified. Halobenzoquinones (HBQs) have been recently predicted as putative disinfection byproducts (DBPs) that might be of toxicological relevance. This study reports the occurrence frequencies and concentrations of HBQs in plant effluents from nine drinking water treatment plants in the USA and Canada, where four common disinfection methods, chlorination, chloramination, chlorination with chloramination, and ozonation with chloramination, are used. In total, 16 water samples were collected and analyzed for eight HBQs: 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (2,6-DC-3-MBQ), 2,3,6-trichloro-1,4-benzoquinone (2,3,6-TriCBQ), 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ), 2,3-dibromo-5,6-dimethyl-1,4-benzoquinone (2,3-DB-5,6-DM-BQ), tetrabromo-1,4-benzoquinone (TetraB-1,4-BQ), and tetrabromo-1,2-benzoquinone (TetraB-1,2-BQ). Of these, 2,6-DCBQ, 2,6-DBBQ, 2,6-DC-3-MBQ and 2,3,6-TriCBQ were detected in 16, 11, 6, and 3 of the 16 samples with the method detection limit (DL) of 1.0, 0.5, 0.9 and 1.5 ng/L, respectively, using a solid phase extraction and high performance liquid chromatography-tandem mass spectrometry method. The concentrations were in the ranges of 4.5-274.5 ng/L for 2,6-DCBQ, below DL to 37.9 ng/L for 2,6-DBBQ, below DL to 6.5 ng/L for 2,6-DC-3-MBQ, and below DL to 9.1 ng/L for 2,3,6-TriCBQ. These authentic samples show DCBQ and DBBQ as the most abundant and frequently detectable HBQs. In addition, laboratory controlled experiments were performed to examine the formation of HBQs and their subsequent stability toward hydrolysis when the disinfectants, chlorine, chloramine, or ozone followed by chloramines, reacted with phenol (a known precursor) under various conditions. The controlled reactions demonstrate that chlorination produces the highest amounts of DCBQ, while pre-ozonation increases the formation of DBBQ in the presence of bromide. At pH < 6.8, 2,6-DCBQ was observed to be stable, but it was easily hydrolyzed to form mostly 3-hydroxyl-2,6-DCBQ at pH 7.6 in drinking water.


Benzoquinones/analysis , Benzoquinones/chemistry , Disinfection/methods , Drinking Water/chemistry , Water Purification/methods , Canada , Chloramines/chemistry , Halogenation , Hydrogen-Ion Concentration , Hydrolysis , Laboratories , Mass Spectrometry , Phenols/chemistry , Reproducibility of Results , United States
11.
J Med Chem ; 55(12): 5901-21, 2012 Jun 28.
Article En | MEDLINE | ID: mdl-22591402

A therapeutic rationale is proposed for the treatment of inflammatory diseases, such as rheumatoid arthritis (RA), by specific targeting of the JAK1 pathway. Examination of the preferred binding conformation of clinically effective, pan-JAK inhibitor 1 led to identification of a novel, tricyclic hinge binding scaffold 3. Exploration of SAR through a series of cycloamino and cycloalkylamino analogues demonstrated this template to be highly tolerant of substitution, with a predisposition to moderate selectivity for the JAK1 isoform over JAK2. This study culminated in the identification of subnanomolar JAK1 inhibitors such as 22 and 49, having excellent cell potency, good rat pharmacokinetic characteristics, and excellent kinase selectivity. Determination of the binding modes of the series in JAK1 and JAK2 by X-ray crystallography supported the design of analogues to enhance affinity and selectivity.


Imidazoles/chemistry , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Animals , Cell Line , Janus Kinase 1/chemistry , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/chemistry , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats , Substrate Specificity
14.
Toxicology ; 289(2-3): 151-9, 2011 Nov 18.
Article En | MEDLINE | ID: mdl-21864635

Bromate (BrO(3)(-)) is a drinking water disinfection by-product (DBP) that induces renal cell death via DNA damage-dependent and -independent mechanisms. Drinking water contains other DBPs in addition to BrO(3)(-). We tested the effect of two of these, sodium chlorite (NaClO(2)) and bromochloroacetic acid (BCAA), on BrO(3)(-) cytotoxicity in normal rat kidney (NRK) cells. NaClO(2) and BCAA alone induced cytotoxicity at concentrations of over 20ppm, while BrO(3)(-) was only moderately cytotoxic at concentrations of 200ppm. Combining BrO(3)(-) with NaClO(2) or BCAA alone enhanced cytotoxicity 1.5-4 fold. Exposing cells to all three compounds induced synergistic-like increases in cytotoxicity. This effect did not correlate to increases in reactive oxygen species (ROS), even though all three compounds induced ROS formation alone. NaClO(2), but not BCAA, increased BrO(3)(-)-mediated DNA damage as measured by 8-hydroxydeoxyguanosine (8-OHdG) staining. In addition, NaClO(2), but not BCAA, decreased BrO(3)(-)-induced G2/M cell cycle arrest. Both compounds increased apoptosis in the presence of BrO(3)(-) as assessed by annexin V, PI, and DAPI staining. This is in contrast to BrO(3)(-) treatment alone, which induced necrosis. Immunoblot analysis showed that both NaClO(2) and BCAA increased p38 activation; however, consistent with 8-OHdG staining, only NaClO(2) increased BrO(3)(-)-induced histone H2AX phosphorylation, a marker of DNA damage. In contrast, BCAA, but not NaClO(2), increased BrO(3)(-)-induced phosphorylation of p53. These data support the novel finding that mixtures of DBPs increase BrO(3)(-)-induced renal cell death by DNA-dependent and -independent mechanisms, and could alter how the risk of these DBPs towards humans is assessed.


Acetates/toxicity , Bromates/toxicity , Chlorides/toxicity , Kidney/drug effects , Animals , Cell Death/drug effects , Cell Death/physiology , Cell Line , Drug Synergism , Kidney/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats
15.
Toxicology ; 286(1-3): 1-19, 2011 Aug 15.
Article En | MEDLINE | ID: mdl-21605618

Drinking water disinfectants react with natural organic material (NOM) present in source waters used for drinking water to produce a wide variety of by-products. Several hundred disinfections by-products (DBPs) have been identified, but none have been identified with sufficient carcinogenic potency to account for the cancer risks projected from epidemiological studies. In a search for DBPs that might fill this risk gap, the present study projected reactions of chlorine and chloramine that could occur with substructures present in NOM to produce novel by-products. A review of toxicological data on related compounds, supplemented by use of a quantitative structure toxicity relationship (QSTR) program TOPKAT®) identified chemicals with a high probability of being chronically toxic and/or carcinogenic among 489 established and novel DBPs. Classes of DBPs that were specifically examined were haloquinones (HQs), related halo-cyclopentene and cyclohexene (HCP&H) derivatives, halonitriles (HNs), organic N-chloramines (NCls), haloacetamides (HAMs), and nitrosamines (NAs). A review of toxicological data available for quinones suggested that HQs and HCP&H derivatives appeared likely to be of health concern and were predicted to have chronic lowest observed adverse effect levels (LOAELs) in the low µg/kg day range. Several HQs were predicted to be carcinogenic. Some have now been identified in drinking water. The broader class of HNs was explored by considering current toxicological data on haloacetonitriles and extending this to halopropionitriles. 2,2-dichloropropionitrile has been identified in drinking water at low concentrations, as well as the more widely recognized haloacetonitriles. The occurrence of HAMs has been previously documented. The very limited toxicological data on HAMs suggests that this class would have toxicological potencies similar to the dihaloacetic acids. Organic N-halamines are also known to be produced in drinking water treatment and have biological properties of concern, but no member has ever been characterized toxicologically beyond bacterial or in vitro studies of genotoxicity. The documented formation of several nitrosamines from secondary amines from both natural and industrial sources prompted exploration of the formation of additional nitrosamines. N-diphenylnitrosamine was identified in drinking waters. Of more interest, however, was the formation of phenazine (and subsequently N-chorophenazine) in a competing reaction. These are the first heterocyclic amines that have been identified as chlorination by-products. Consideration of the amounts detected of members of these by-product classes and their probable toxicological potency suggest a prioritization for obtaining more detailed toxicological data of HQs>HCP&H derivatives>NCls>HNs. Based upon a ubiquitous occurrence and virtual lack of in vivo toxicological data, NCls are the most difficult group to assign a priority as potential carcinogenic risks. This analysis indicates that research on the general problem of DBPs requires a more systematic approach than has been pursued in the past. Utilization of predictive chemical tools to guide further research can help bring resolution to the DBP issue by identifying likely DBPs with high toxicological potency.


Carcinogens, Environmental/toxicity , Disinfectants/toxicity , Water Pollutants, Chemical/toxicity , Amines/chemistry , Amines/toxicity , Animals , Carcinogens, Environmental/chemistry , Disinfectants/chemistry , Disinfection/methods , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/toxicity , Humans , Hydrocarbons, Halogenated/chemistry , Hydrocarbons, Halogenated/toxicity , Quantitative Structure-Activity Relationship , Water Pollutants, Chemical/chemistry , Water Purification/methods , Water Supply/standards
16.
Regul Toxicol Pharmacol ; 60(1): 1-19, 2011 Jun.
Article En | MEDLINE | ID: mdl-20056125

The detection of drugs in drinking water sources has raised questions related to safety. In the absence of regulatory or other official guidance, water utilities are faced with a problem of which drugs should be monitored and the detection limits that should be required. The US FDA summarizes data required for drug approval and post marketing adverse reaction reporting. The use of these data as a means of arriving at concentrations in water where adverse health effects are minimal or non-existent was explored. The minimum therapeutic dose was assumed an appropriate point of departure. Appropriate uncertainty factors could be applied depending upon the qualitative and quantitative nature of the data that are available. Assumptions inherent in US FDA's approval of drugs for use in subsets of the population relative to the broader concerns that arise for exposures of the entire population had to be considered. Additional questions are; whether the drug under consideration is carcinogenic, carries pregnancy and lactation warnings, approval for limited vs. chronic use, exposures to multiple compounds that could act in additive or synergistic ways, and the seriousness of toxicities that are observed. Aside from these considerations, a combined uncertainty factor of 1000 appeared adequate.


Drug-Related Side Effects and Adverse Reactions , Recycling/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/adverse effects , Water Purification/methods , Water Supply , Animals , Animals, Laboratory , Dose-Response Relationship, Drug , Environmental Monitoring , Humans , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/standards , Recycling/standards , Risk Assessment , Waste Disposal, Fluid/standards , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/standards , Water Purification/standards , Water Supply/analysis , Water Supply/standards
17.
Toxicology ; 269(1): 13-23, 2010 Feb 28.
Article En | MEDLINE | ID: mdl-20067818

The mechanisms of bromate (BrO(3)(-))-induced toxicity in Normal Rat Kidney (NRK) and human embryonic kidney 293 (HEK293) cells were investigated. BrO(3)(-) (added as KBrO(3)) induced concentration-dependent decreases in 3-(4, dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) staining after 48 h. BrO(3)(-)-induced necrosis based on tandem increases in annexin V and PI staining. Cell cycle analysis demonstrated that BrO(3)(-) also induced G2/M arrest and nuclear fragmentation, prior to alterations in MTT staining or annexin V and PI staining. Immunoblot analysis demonstrated that the G2/M arrest correlated to induction of phosphorylated (p)-p53, p21, cyclin B1 and p-cdc2. Further, BrO(3)(-) induced time-dependent increases in the activity of the mitogen activated protein kinases p38 and ERK1/2. Treatment of cells with the p38 inhibitor SB202190, but not the ERK1/2 inhibitor PD98059, partially reversed BrO(3)(-)-induced G2/M arrest and decreased BrO(3)(-)-induced p-p53, p21 and cyclin B1 expression. In addition, BrO(3)(-) treatment induced reactive oxygen species (ROS) based on increases in CM-H(2)DCFDA fluorescence. The antioxidant ascorbic acid inhibited BrO(3)(-)-induced p38 activation, G2/M arrest, p-p53, p21 and cyclin B1 expression; however, ascorbic acid had no effect on BrO(3)(-)-induced formation of 8-OHdG, a marker of DNA oxidative damage, whose increases preceded cell death by 24h. These data suggest that ROS mediated MAPK activation is involved in the molecular mechanisms of BrO(3)(-)-induced cell cycle arrest, which occurs independently of 8-OH-dG production. The similar mode of action in both NRK and HEK293 cells suggests that the mechanisms of BrO(3)(-)-induced renal cell death are model-independent.


Bromates/toxicity , Cell Cycle/drug effects , Kidney/drug effects , Kidney/pathology , Animals , Cell Cycle/physiology , Cell Line , Humans , Kidney/physiology , Rats
18.
J Toxicol Environ Health A ; 72(7): 429-36, 2009.
Article En | MEDLINE | ID: mdl-19267305

Humans are exposed daily to complex mixtures of environmental chemical contaminants, which arise as releases from sources such as engineering procedures, degradation processes, and emissions from mobile or stationary sources. When dose-response data are available for the actual environmental mixture to which individuals are exposed (i.e., the mixture of concern), these data provide the best information for dose-response assessment of the mixture. When suitable data on the mixture itself are not available, surrogate data might be used from a sufficiently similar mixture or a group of similar mixtures. Consequently, the determination of whether the mixture of concern is "sufficiently similar" to a tested mixture or a group of tested mixtures is central to the use of whole mixture methods. This article provides an overview for a series of companion articles whose purpose is to develop a set of biostatistical, chemical, and toxicological criteria and approaches for evaluating the similarity of drinking-water disinfection by-product (DBPs) complex mixtures. Together, the five articles in this series serve as a case study whose techniques will be relevant to assessing similarity for other classes of complex mixtures of environmental chemicals. Schenck et al. (2009) describe the chemistry and mutagenicity of a set of DBP mixtures concentrated from five different drinking-water treatment plants. Bull et al. (2009a, 2009b) describe how the variables that impact the formation of DBP affect the chemical composition and, subsequently, the expected toxicity of the mixture. Feder et al. (2009a, 2009b) evaluate the similarity of DBP mixture concentrates by applying two biostatistical approaches, principal components analysis, and a nonparametric "bootstrap" analysis. Important factors for determining sufficient similarity of DBP mixtures found in this research include disinfectant used; source water characteristics, including the concentrations of bromide and total organic carbon; concentrations and proportions of individual DBPs with known toxicity data on the same endpoint; magnitude of the unidentified fraction of total organic halides; similar toxicity outcomes for whole mixture testing (e.g., mutagenicity); and summary chemical measures such as total trihalomethanes, total haloacetic acids, total haloacetonitriles, and the levels of bromide incorporation in the DBP classes.


Complex Mixtures/analysis , Complex Mixtures/toxicity , Disinfectants/toxicity , Disinfection , Water Pollutants/analysis , Water Pollutants/toxicity , Water Supply/analysis , Animals , Disinfectants/analysis , Disinfectants/pharmacology , Dose-Response Relationship, Drug , Humans , Risk Assessment , Water Pollutants/isolation & purification
19.
J Toxicol Environ Health A ; 72(7): 437-60, 2009.
Article En | MEDLINE | ID: mdl-19267306

Reactive chemicals have been used to disinfect drinking waters for over a century. In the 1970s, it was first observed that the reaction of these chemicals with the natural organic matter (NOM) in source waters results in the production of variable, complex mixtures of disinfection by-products (DBP). Because limited toxicological and epidemiological data are available to assess potential human health risks from complex DBP mixture exposures, methods are needed to determine when health effects data on a specific DBP mixture may be used as a surrogate for evaluating another environmental DBP mixture of interest. Before risk assessors attempt such efforts, a set of criteria needs to be in place to determine whether two or more DBP mixtures are similar in composition and toxicological potential. This study broadly characterizes the chemical and toxicological measures that may be used to evaluate similarities among DBP mixtures. Variables are discussed that affect qualitative and quantitative shifts in the types of DBP that are formed, including disinfectants used, their reactions with NOM and with bromide/iodide, pH, temperature, time, and changes in the water distribution system. The known toxicological activities of DBP mixtures and important single DBPs are also presented in light of their potential for producing similar toxicity. While DBP exposures are associated with a number of health effects, this study focuses on (1) mutagenic activity of DBP mixtures, (2) DBP cancer epidemiology, and (3) toxicology studies to evaluate similarity among DBP mixtures. Data suggest that further chemical characterization of DBP mixtures and more systematic study of DBP toxicology will improve the quality and usefulness of similarity criteria.


Complex Mixtures/analysis , Complex Mixtures/toxicity , Disinfectants/analysis , Disinfectants/toxicity , Water Supply/analysis , Animals , Carcinogens/analysis , Carcinogens/toxicity , Epidemiologic Measurements , Humans , Hydrogen-Ion Concentration , Mutagens/toxicity , Organic Chemicals/analysis , Temperature , Water/chemistry
20.
J Toxicol Environ Health A ; 72(7): 468-81, 2009.
Article En | MEDLINE | ID: mdl-19267308

For evaluation of the adverse health effects associated with exposures to complex chemical mixtures in the environment, the U.S. Environmental Protection Agency (EPA) (2000) states, "if no data are available on the mixture of concern, but health effects data are available on a similar mixture ... a decision must be made whether the mixture on which health effects are available is 'sufficiently' similar to the mixture of concern to permit a risk assessment." This article provides a detailed discussion of statistical considerations for evaluation of the similarity of mixtures. Multivariate statistical procedures are suggested to determine whether individual samples of drinking-water disinfection by-products (DBPs) vary significantly from a group of samples that are considered to be similar. The application of principal components analysis to (1) reduce the dimensionality of the vectors of water samples and (2) permit visualization and statistical comparisons in lower dimensional space is suggested. Formal analysis of variance tests of homogeneity are illustrated. These multivariate statistical procedures are applied to a data set describing samples from multiple water treatment plants. Essential data required for carrying out sensitive analyses include (1) identification and measurement of toxicologically sensitive process input and output characteristics, and (2) estimates of variability within the data to construct statistically efficient estimates and tests.


Complex Mixtures/analysis , Complex Mixtures/toxicity , Data Interpretation, Statistical , Disinfectants/analysis , Disinfectants/toxicity , Water Supply/analysis , Algorithms , Analysis of Variance , Animals , Disinfection , Humans , Matched-Pair Analysis , Principal Component Analysis , Risk Assessment
...