Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
EMBO Mol Med ; 12(2): e11223, 2020 02 07.
Article En | MEDLINE | ID: mdl-31912630

Systemic toxicities have severely limited the clinical application of tumor necrosis factor (TNF) as an anticancer agent. Activity-on-Target cytokines (AcTakines) are a novel class of immunocytokines with improved therapeutic index. A TNF-based AcTakine targeted to CD13 enables selective activation of the tumor neovasculature without any detectable toxicity in vivo. Upregulation of adhesion markers supports enhanced T-cell infiltration leading to control or elimination of solid tumors by, respectively, CAR T cells or a combination therapy with CD8-targeted type I interferon AcTakine. Co-treatment with a CD13-targeted type II interferon AcTakine leads to very rapid destruction of the tumor neovasculature and complete regression of large, established tumors. As no tumor markers are needed, safe and efficacious elimination of a broad range of tumor types becomes feasible.


Immunotherapy , Neoplasms , Tumor Necrosis Factor-alpha , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/therapy
2.
Oncoimmunology ; 7(3): e1398876, 2018.
Article En | MEDLINE | ID: mdl-29399401

Despite approval for the treatment of various malignancies, clinical application of cytokines such as type I interferon (IFN) is severely impeded by their systemic toxicity. AcTakines (Activity-on-Target cytokines) are optimized immunocytokines that, when injected in mice, only reveal their activity upon cell-specific impact. We here show that type I IFN-derived AcTaferon targeted to the tumor displays strong antitumor activity without any associated toxicity, in contrast with wild type IFN. Treatment with CD20-targeted AcTaferon of CD20+ lymphoma tumors or melanoma tumors engineered to be CD20+, drastically reduced tumor growth. This antitumor effect was completely lost in IFNAR- or Batf3-deficient mice, and depended on IFN signaling in conventional dendritic cells. Also the presence of, but not the IFN signaling in, CD8+ T lymphocytes was critical for proficient antitumor effects. When combined with immunogenic chemotherapy, low-dose TNF, or immune checkpoint blockade strategies such as anti-PDL1, anti-CTLA4 or anti-LAG3, complete tumor regressions and subsequent immunity (memory) were observed, still without any concomitant morbidity, again in sharp contrast with wild type IFN. Interestingly, the combination therapy of tumor-targeted AcTaferon with checkpoint inhibiting antibodies indicated its ability to convert nonresponding tumors into responders. Collectively, our findings demonstrate that AcTaferon targeted to tumor-specific surface markers may provide a safe and generic addition to cancer (immuno)therapies.

3.
EMBO Mol Med ; 6(12): 1525-41, 2014 Dec.
Article En | MEDLINE | ID: mdl-25253726

Deregulated expression of MYC is a driver of colorectal carcinogenesis, necessitating novel strategies to inhibit MYC function. The ubiquitin ligase HUWE1 (HECTH9, ARF-BP1, MULE) associates with both MYC and the MYC-associated protein MIZ1. We show here that HUWE1 is required for growth of colorectal cancer cells in culture and in orthotopic xenograft models. Using high-throughput screening, we identify small molecule inhibitors of HUWE1, which inhibit MYC-dependent transactivation in colorectal cancer cells, but not in stem and normal colon epithelial cells. Inhibition of HUWE1 stabilizes MIZ1. MIZ1 globally accumulates on MYC target genes and contributes to repression of MYC-activated target genes upon HUWE1 inhibition. Our data show that transcriptional activation by MYC in colon cancer cells requires the continuous degradation of MIZ1 and identify a novel principle that allows for inhibition of MYC function in tumor cells.


Colorectal Neoplasms/enzymology , Oncogene Protein p55(v-myc)/antagonists & inhibitors , Oncogene Protein p55(v-myc)/metabolism , Small Molecule Libraries/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/physiopathology , Gene Expression Regulation, Neoplastic , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, SCID , Oncogene Protein p55(v-myc)/genetics , Protein Binding , Small Molecule Libraries/administration & dosage , Transcriptional Activation , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Nitric Oxide ; 36: 36-43, 2014 Jan 30.
Article En | MEDLINE | ID: mdl-24269486

Sepsis and septic shock result from an exacerbated systemic inflammatory reaction to infection. Their incidence is rising, and they have recently become the main cause of death in intensive care units. Septic shock is defined as sepsis accompanied by life-threatening refractory hypotension, for which excessive nitric oxide (NO), produced by inducible NO synthase iNOS, is thought responsible. LPS, a vital outer membrane component of Gram-negative bacteria, mimics most of the septic effects and is widely used as a model for septic shock. TLR4 is the signal-transducing receptor for LPS, evidenced by the resistance of TLR4-deficient C3H/HeJ and C57BL/10ScNJ mice. As expected, we found that TLR4 deficiency precludes LPS-induced cytokine production, independent of the purity of the LPS preparation. However, various conventional LPS preparations induced NO in TLR4-deficient mice to the same level as in control animals, while ultrapure LPS did not, indicating the presence of NO-producing contaminant(s). Nevertheless, despite identical iNOS induction pattern and systemic NO levels, the contaminant does not cause hypotension, hypothermia, or any other sign of morbidity. Using mice deficient for TLR2, TRL3, TLR4, TRL2x4, TLR9, MyD88 or TRIF, we found that the contaminant signals via TLR2 and MyD88. In conclusion, conventional LPS preparations generally used in endotoxic shock research contain TLR2 agonists that induce iNOS and high levels of systemic NO as such, and synergize with LPS towards the production of pro-inflammatory cytokines, morbidity and mortality. Surprisingly, the excessive iNOS-derived systemic NO production induced by impure LPS in TLR4⁻/⁻ is not accompanied by hypotension or morbidity.


Endotoxins/metabolism , Nitric Oxide/metabolism , Sepsis/metabolism , Toll-Like Receptor 4/genetics , Animals , Hypotension/genetics , Inflammation , Lipopolysaccharides/metabolism , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Nitric Oxide Synthase Type II/metabolism , Signal Transduction , Toll-Like Receptor 2/genetics
5.
Cardiovasc Res ; 100(1): 28-35, 2013 Oct 01.
Article En | MEDLINE | ID: mdl-23787001

AIMS: Septic shock is the leading cause of death in intensive care units worldwide, resulting from a progressive systemic inflammatory reaction causing cardiovascular and organ failure. Nitric oxide (NO) is a potent vasodilator and inhibition of NO synthases (NOS) can increase blood pressure in septic shock. However, NOS inhibition does not improve outcome, on the contrary, and certain NO donors may even provide protection. In addition, NOS produce superoxide in case of substrate or cofactor deficiency or oxidation. We hypothesized that excessive systemic iNOS-derived NO production is insufficient to trigger cardiovascular failure and shock. METHODS AND RESULTS: We found that the systemic injection with various synthetic Toll-like receptor-2 (TLR2), TLR3, or TLR9 agonists triggered systemic NO production identical to that of lipopolysaccharide (LPS) or tumour necrosis factor. In contrast to the latter, however, these agonists did not cause hypothermia or any other signs of discomfort or morbidity, and inflammatory cytokine production was low. TLR2 stimulation with the triacylated lipopeptide Pam3CSK4 not only caused identical NO levels in circulation, but also identical iNOS expression patterns as LPS. Nevertheless, Pam3CSK4 did not cause hypotension, bradycardia, reduced blood flow, or inadequate tissue perfusion in the kidney or the liver. CONCLUSION: We demonstrate that excessive iNOS-derived NO in circulation is not necessarily linked to concomitant cardiovascular collapse, morbidity, or mortality. As such, our data indicate that the central role of iNOS-derived NO in inflammation-associated cardiovascular failure may be overestimated.


Nitric Oxide/biosynthesis , Shock, Septic/etiology , Toll-Like Receptor 2/physiology , Animals , Cytokines/physiology , Female , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Morbidity , Nitric Oxide Synthase/physiology , Systemic Inflammatory Response Syndrome/etiology
6.
Curr Pharm Des ; 18(30): 4619-29, 2012.
Article En | MEDLINE | ID: mdl-22650261

Physical interactions among proteins constitute the backbone of cellular function, making them an attractive source of therapeutic targets. Although the challenges associated with targeting protein-protein interactions (PPIs) -in particular with small molecules - are considerable, a growing number of functional PPI modulators is being reported and clinically evaluated. An essential starting point for PPI inhibitor screening or design projects is the generation of a detailed map of the human interactome and the interactions between human and pathogen proteins. Different routes to produce these biological networks are being combined, including literature curation and computational methods. Experimental approaches to map PPIs mainly rely on the yeast two-hybrid (Y2H) technology, which have recently shown to produce reliable protein networks. However, other genetic and biochemical methods will be essential to increase both coverage and resolution of current protein networks in order to increase their utility towards the identification of novel disease-related proteins and PPIs, and their potential use as therapeutic targets.


Drug Discovery/methods , Models, Molecular , Protein Interaction Mapping/methods , Protein Interaction Maps , Small Molecule Libraries , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Databases, Protein , Humans , Molecular Structure , Protein Binding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Two-Hybrid System Techniques
7.
Cancer Res ; 70(16): 6619-28, 2010 Aug 15.
Article En | MEDLINE | ID: mdl-20682801

Canonical Wnt signaling plays a critical role in stem cell maintenance in epithelial homeostasis and carcinogenesis. Here, we show that in the mouse this role is critically mediated by Bcl9/Bcl9l, the mammalian homologues of Legless, which in Drosophila is required for Armadillo/beta-catenin signaling. Conditional ablation of Bcl9/Bcl9l in the intestinal epithelium, where the essential role of Wnt signaling in epithelial homeostasis and stem cell maintenance is well documented, resulted in decreased expression of intestinal stem cell markers and impaired regeneration of ulcerated colon epithelium. Adenocarcinomas with aberrant Wnt signaling arose with similar incidence in wild-type and mutant mice. However, transcriptional profiles were vastly different: Whereas wild-type tumors displayed characteristics of epithelial-mesenchymal transition (EMT) and stem cell-like properties, these properties were largely abrogated in mutant tumors. These findings reveal an essential role for Bcl9/Bcl9l in regulating a subset of Wnt target genes involved in controlling EMT and stem cell-related features and suggest that targeting the Bcl9/Bcl9l arm of Wnt signaling in Wnt-activated cancers might attenuate these traits, which are associated with tumor invasion, metastasis, and resistance to therapy.


Adenocarcinoma/pathology , Colonic Neoplasms/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Neoplastic Stem Cells/pathology , Wnt Proteins/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Transgenic , Neoplastic Stem Cells/physiology , Transcription Factors , Wnt Proteins/biosynthesis , Wnt Proteins/genetics
8.
FASEB J ; 20(13): 2363-5, 2006 Nov.
Article En | MEDLINE | ID: mdl-17020927

Septic shock is the leading cause of death in noncoronary intensive care units and the 10th leading cause of death overall. Several lines of evidence support an important role for the vasodilator NO in hypotension, a hallmark of septic shock. However, NO may also positively or negatively regulate inflammation, apoptosis, and oxidative stress. These dual effects of NO may relate to its isoform specific production but also to differences in cellular and/or temporal expression. Via bone marrow transplantations, we examined the contribution of hematopoietic cells to the dramatically elevated NO levels seen in (septic) shock. Surprisingly, hematopoietic cells are not responsible at all for the production of circulating NO after systemic tumor necrosis factor or lipopolysaccharide challenge and contribute only marginally in a bacteremic (Salmonella) model of septic shock. Immunohistochemistry identified the nonhematopoietic sources of NO as hepatocytes, paneth cells, and intestinal and renal epithelial cells. In contrast, during granulomatous Bacillus Calmette-Guérin inflammation, the hematopoietic cell population represents the sole source of systemic NO. These mouse data demonstrate that, in contrast to the general conjecture, the dramatically elevated levels of NO during (septic) shock are not produced by hematopoietic cells such as monocytes/macrophages but rather by parenchymal cells in liver, kidney and gut.


Nitric Oxide Synthase Type II/genetics , Nitric Oxide/physiology , Shock, Septic/physiopathology , Animals , DNA Primers , Female , Gene Expression Regulation, Enzymologic , Inflammation/physiopathology , Interleukin-6/blood , Kidney/physiopathology , Liver/physiopathology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Monocytes/physiology , Polymerase Chain Reaction , Receptors, Tumor Necrosis Factor/deficiency , Receptors, Tumor Necrosis Factor/genetics , Stem Cells/physiology
9.
Cytokine ; 36(3-4): 160-6, 2006 Nov.
Article En | MEDLINE | ID: mdl-17207633

Sepsis is a systemic inflammatory response syndrome resulting from an inappropriate innate immune response to infection. TNF and interleukin (IL)-6 are critically involved in this syndrome and although conclusive in vivo evidence is missing, innate immune cells are believed to be the principal producers of these cytokines. We investigated this assumption by performing bone marrow transplantations (BMT) between LPS-sensitive (C3H/HeN) and LPS-hyporesponsive (C3H/HeJ) mice. For adequate LPS-induced systemic TNF production, the hematopoietic cell population was absolutely required. In contrast, IL-6 could be detected in the circulation of LPS-treated chimeric mice, of which either the hematopoietic or the parenchymal cell population was hyporesponsive to LPS. So, whereas hematopoietic cells are the sole source of systemic TNF in an LPS-induced model of sepsis, both hematopoietic and parenchymal cells are required for systemic IL-6 production. Moreover, LPS-induced IL-6 production in parenchymal cells may be partially mediated by the TNF/TNF-R1 pathway as evidenced by the systemic IL-6 levels in LPS-treated wild type (WT), TNF-R1-deficient and chimeric mice.


Blood Cells/metabolism , Endotoxemia/blood , Interleukin-6/blood , Tumor Necrosis Factor-alpha/blood , Animals , Blood Cells/drug effects , Bone Marrow Transplantation , Female , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Receptors, Tumor Necrosis Factor, Type I/genetics , Whole-Body Irradiation
...