Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Innate Immun ; 14(5): 569-580, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35249041

RESUMEN

Influenza A Virus (IAV), Staphylococcus aureus (staphylococci), and Streptococcus pneumoniae (pneumococci) are leading viral and bacterial causes of pneumonia. Dendritic cells (DCs) are present in the lower respiratory tract. They are characterized by low expression of co-stimulatory molecules, including CD80 and CD86 and high capacity of antigen uptake. Subsequently, DCs upregulate co-stimulatory signals and cytokine secretion to effectively induce T-cell priming. Here, we investigated these processes in response to bacterial and viral single as well as coinfections using human monocyte-derived (mo)DCs. Irrespective of single or coinfections, moDCs matured in response to IAV and/or staphylococcal infections, secreted a wide range of cytokines, and activated CD4+, CD8+ as well as double-negative T cells. In contrast, pneumococcal single and coinfections impaired moDC maturation, which was characterized by low expression of CD80 and CD86, downregulated expression of CD40, and a mild cytokine release resulting in abrogated CD4+ T-cell activation. These actions were attributed to the cholesterol-dependent cytotoxin pneumolysin (Ply). Infections with a ply-deficient mutant resulted in restored moDC maturation and exclusive CD4+ T-cell activation. These findings show that Ply has important immunomodulatory functions, supporting further investigations in specific modalities of Ply-DC interplay.


Asunto(s)
Coinfección , Virus de la Influenza A , Proteínas Bacterianas , Linfocitos T CD4-Positivos , Coinfección/metabolismo , Citocinas/metabolismo , Células Dendríticas , Humanos , Streptococcus pneumoniae , Estreptolisinas
2.
J Innate Immun ; 14(3): 192-206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34515145

RESUMEN

Epithelial cells play a crucial role in detection of the pathogens as well as in initiation of the host immune response. Streptococcus pneumoniae (pneumococcus) is a typical colonizer of the human nasopharynx, which can disseminate to the lower respiratory tract and subsequently cause severe invasive diseases such as pneumonia, sepsis, and meningitis. Hydrogen peroxide (H2O2) is produced by pneumococci as a product of the pyruvate oxidase SpxB. However, its role as a virulence determinant in pneumococcal infections of the lower respiratory tract is not well understood. In this study, we investigated the role of pneumococcal-derived H2O2 in initiating epithelial cell death by analyzing the interplay between 2 key cell death pathways, namely, apoptosis and pyroptosis. We demonstrate that H2O2 primes as well as activates the NLRP3 inflammasome and thereby mediates IL-1ß production and release. Furthermore, we show that pneumococcal H2O2 causes cell death via the activation of both apoptotic as well as pyroptotic pathways which are mediated by the activation of caspase-3/7 and caspase-1, respectively. However, H2O2-mediated IL-1ß release itself occurs mainly via apoptosis.


Asunto(s)
Inflamasomas , Infecciones Neumocócicas , Caspasa 1/metabolismo , Células Epiteliales/metabolismo , Humanos , Peróxido de Hidrógeno , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Streptococcus pneumoniae
3.
Front Cell Infect Microbiol ; 11: 763152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790590

RESUMEN

The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. S. pneumoniae expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG. These serine proteases have recently received increasing attention because of their immunogenicity and pivotal role in the interaction with host proteins. This review is summarizing and focusing on the molecular and functional analysis of pneumococcal serine proteases, thereby discussing their contribution to pathogenesis.


Asunto(s)
Otitis Media , Infecciones Neumocócicas , Humanos , Serina Endopeptidasas/genética , Streptococcus pneumoniae/genética , Subtilisina , Tripsina
4.
Microorganisms ; 9(3)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668344

RESUMEN

Streptococcus pneumoniae two-component regulatory systems (TCSs) are important systems that perceive and respond to various host environmental stimuli. In this study, we have explored the role of TCS09 on gene expression and phenotypic alterations in S. pneumoniae D39. Our comparative transcriptomic analyses identified 67 differently expressed genes in total. Among those, agaR and the aga operon involved in galactose metabolism showed the highest changes. Intriguingly, the encapsulated and nonencapsulated hk09-mutants showed significant growth defects under nutrient-defined conditions, in particular with galactose as a carbon source. Phenotypic analyses revealed alterations in the morphology of the nonencapsulated hk09- and tcs09-mutants, whereas the encapsulated hk09- and tcs09-mutants produced higher amounts of capsule. Interestingly, the encapsulated D39∆hk09 showed only the opaque colony morphology, while the D39∆rr09- and D39∆tcs09-mutants had a higher proportion of transparent variants. The phenotypic variations of D39ΔcpsΔhk09 and D39ΔcpsΔtcs09 are in accordance with their higher numbers of outer membrane vesicles, higher sensitivity against Triton X-100 induced autolysis, and lower resistance against oxidative stress. In conclusion, these results indicate the importance of TCS09 for pneumococcal metabolic fitness and resistance against oxidative stress by regulating the carbohydrate metabolism and thereby, most likely indirectly, the cell wall integrity and amount of capsular polysaccharide.

5.
J Infect Dis ; 222(10): 1702-1712, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32445565

RESUMEN

BACKGROUND: In tissue infections, adenosine triphosphate (ATP) is released into extracellular space and contributes to purinergic chemotaxis. Neutrophils are important players in bacterial clearance and are recruited to the site of tissue infections. Pneumococcal infections can lead to uncontrolled hyperinflammation of the tissue along with substantial tissue damage through excessive neutrophil activation and uncontrolled granule release. We aimed to investigate the role of ATP in neutrophil response to pneumococcal infections. METHODS: Primary human neutrophils were exposed to the pneumococcal strain TIGR4 and its pneumolysin-deficient mutant or directly to different concentrations of recombinant pneumolysin. Neutrophil activation was assessed by measurement of secreted azurophilic granule protein resistin and profiling of the secretome, using mass spectrometry. RESULTS: Pneumococci are potent inducers of neutrophil degranulation. Pneumolysin was identified as a major trigger of neutrophil activation. This process is partially lysis independent and inhibited by ATP. Pneumolysin and ATP interact with each other in the extracellular space leading to reduced neutrophil activation. Proteome analyses of the neutrophil secretome confirmed that ATP inhibits pneumolysin-dependent neutrophil activation. CONCLUSIONS: Our findings suggest that despite its cytolytic activity, pneumolysin serves as a potent neutrophil activating factor. Extracellular ATP mitigates pneumolysin-induced neutrophil activation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Activación Neutrófila/efectos de los fármacos , Infecciones Neumocócicas/metabolismo , Estreptolisinas/efectos adversos , Proteínas Bacterianas/efectos adversos , Muerte Celular , Humanos , Neutrófilos/metabolismo , Neutrófilos/microbiología , Streptococcus pneumoniae
6.
Front Cell Infect Microbiol ; 10: 613467, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33659218

RESUMEN

Streptococcus pneumoniae has evolved versatile strategies to colonize the nasopharynx of humans. Colonization is facilitated by direct interactions with host cell receptors or via binding to components of the extracellular matrix. In addition, pneumococci hijack host-derived extracellular proteases such as the serine protease plasmin(ogen) for ECM and mucus degradation as well as colonization. S. pneumoniae expresses strain-dependent up to four serine proteases. In this study, we assessed the role of secreted or cell-bound serine proteases HtrA, PrtA, SFP, and CbpG, in adherence assays and in a mouse colonization model. We hypothesized that the redundancy of serine proteases compensates for the deficiency of a single enzyme. Therefore, double and triple mutants were generated in serotype 19F strain EF3030 and serotype 4 strain TIGR4. Strain EF3030 produces only three serine proteases and lacks the SFP encoding gene. In adherence studies using Detroit-562 epithelial cells, we demonstrated that both TIGR4Δcps and 19F mutants without serine proteases or expressing only CbpG, HtrA, or PrtA have a reduced ability to adhere to Detroit-562 cells. Consistent with these results, we show that the mutants of strain 19F, which preferentially colonizes mice, abrogate nasopharyngeal colonization in CD-1 mice after intranasal infection. The bacterial load in the nasopharynx was monitored for 14 days. Importantly, mutants showed significantly lower bacterial numbers in the nasopharynx two days after infection. Similarly, we detected a significantly reduced pneumococcal colonization on days 3, 7, and 14 post-inoculations. To assess the impact of pneumococcal serine proteases on acute infection, we infected mice intranasally with bioluminescent and invasive TIGR4 or isogenic triple mutants expressing only CbpG, HtrA, PrtA, or SFP. We imaged the acute lung infection in real-time and determined the survival of the mice. The TIGR4lux mutant expressing only PrtA showed a significant attenuation and was less virulent in the acute pneumonia model. In conclusion, our results showed that pneumococcal serine proteases contributed significantly to pneumococcal colonization but played only a minor role in pneumonia and invasive diseases. Because colonization is a prerequisite for invasive diseases and transmission, these enzymes could be promising candidates for the development of antimicrobials to reduce pneumococcal transmission.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Animales , Proteínas Bacterianas/genética , Ratones , Nasofaringe , Serina Proteasas/genética , Streptococcus pneumoniae/genética
7.
PLoS Pathog ; 15(7): e1007987, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31356624

RESUMEN

Streptococcus pneumoniae (pneumococci) is a leading cause of severe bacterial meningitis in many countries worldwide. To characterize the repertoire of fitness and virulence factors predominantly expressed during meningitis we performed niche-specific analysis of the in vivo proteome in a mouse meningitis model, in which bacteria are directly inoculated into the cerebrospinal fluid (CSF) cisterna magna. We generated a comprehensive mass spectrometry (MS) spectra library enabling bacterial proteome analysis even in the presence of eukaryotic proteins. We recovered 200,000 pneumococci from CSF obtained from meningitis mice and by MS we identified 685 pneumococci proteins in samples from in vitro filter controls and 249 in CSF isolates. Strikingly, the regulatory two-component system ComDE and substrate-binding protein AliB of the oligopeptide transporter system were exclusively detected in pneumococci recovered from the CSF. In the mouse meningitis model, AliB-, ComDE-, or AliB-ComDE-deficiency resulted in attenuated meningeal inflammation and disease severity when compared to wild-type pneumococci indicating the crucial role of ComDE and AliB in pneumococcal meningitis. In conclusion, we show here mechanisms of pneumococcal adaptation to a defined host compartment by a proteome-based approach. Further, this study provides the basis of a promising strategy for the identification of protein antigens critical for invasive disease caused by pneumococci and other meningeal pathogens.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas Portadoras/fisiología , Lipoproteínas/fisiología , Meningitis Neumocócica/microbiología , Streptococcus pneumoniae/fisiología , Streptococcus pneumoniae/patogenicidad , Factores de Virulencia/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Genes Bacterianos , Interacciones Microbiota-Huesped/fisiología , Humanos , Lipoproteínas/deficiencia , Lipoproteínas/genética , Masculino , Meningitis Neumocócica/líquido cefalorraquídeo , Ratones , Ratones Endogámicos C57BL , Mutación , Proteómica , Regulón , Streptococcus pneumoniae/genética , Virulencia/genética , Virulencia/fisiología , Factores de Virulencia/genética
8.
Thromb Haemost ; 118(4): 745-757, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29554697

RESUMEN

Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Staphylococcus aureus/química , Plaquetas/metabolismo , Calcio/metabolismo , Quimiotaxis , Farmacorresistencia Bacteriana , Citometría de Flujo , Humanos , Microscopía Fluorescente , Selectina-P/metabolismo , Pruebas de Función Plaquetaria , Dominios Proteicos , Proteínas Recombinantes/metabolismo
9.
Bioelectrochemistry ; 112: 83-90, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27293110

RESUMEN

Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry.


Asunto(s)
Descontaminación/métodos , Electricidad , Legionella pneumophila/efectos de los fármacos , Gases em Plasma/farmacología , Microbiología del Agua , Legionella pneumophila/aislamiento & purificación
10.
Mol Microbiol ; 93(6): 1183-206, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25060741

RESUMEN

Bacterial cell wall hydrolases are essential for peptidoglycan turnover and crucial to preserve cell shape. The d,d-carboxypeptidase DacA and l,d-carboxypeptidase DacB of Streptococcus pneumoniae function in a sequential manner. Here, we determined the structure of the surface-exposed lipoprotein DacB. The crystal structure of DacB, radically different to that of DacA, contains a mononuclear Zn(2+) catalytic centre located in the middle of a large and fully exposed groove. Two different conformations were found presenting a different arrangement of the active site topology. The critical residues for catalysis and substrate specificity were identified. Loss-of-function of DacA and DacB altered the cell shape and this was consistent with a modified peptidoglycan peptide composition in dac mutants. Contrary, an lgt mutant lacking lipoprotein diacylglyceryl transferase activity required for proper lipoprotein maturation retained l,d-carboxypeptidase activity and showed an intact murein sacculus. In addition we demonstrated pathophysiological effects of disabled DacA or DacB activities. Real-time bioimaging of intranasal infected mice indicated a substantial attenuation of ΔdacB and ΔdacAΔdacB pneumococci, while ΔdacA had no significant effect. In addition, uptake of these mutants by professional phagocytes was enhanced, while the adherence to lung epithelial cells was decreased. Thus, structural and functional studies suggest DacA and DacB as optimal drug targets.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Carboxipeptidasas/química , Carboxipeptidasas/genética , Infecciones Neumocócicas/veterinaria , Streptococcus pneumoniae/enzimología , Animales , Proteínas Bacterianas/metabolismo , Carboxipeptidasas/metabolismo , Dominio Catalítico , Pared Celular/fisiología , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Ratones , Modelos Moleculares , Fenotipo , Infecciones Neumocócicas/metabolismo , Estructura Secundaria de Proteína , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidad
11.
J Biol Chem ; 288(22): 15614-27, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23603906

RESUMEN

Adherence of Streptococcus pneumoniae is directly mediated by interactions of adhesins with eukaryotic cellular receptors or indirectly by exploiting matrix and serum proteins as molecular bridges. Pneumococci engage vitronectin, the human adhesive glycoprotein and complement inhibitor, to facilitate attachment to epithelial cells of the mucosal cavity, thereby modulating host cell signaling. In this study, we identified PspC as a vitronectin-binding protein interacting with the C-terminal heparin-binding domain of vitronectin. PspC is a multifunctional surface-exposed choline-binding protein displaying various adhesive properties. Vitronectin binding required the R domains in the mature PspC protein, which are also essential for the interaction with the ectodomain of the polymeric immunoglobulin receptor and secretory IgA. Consequently, secretory IgA competitively inhibited binding of vitronectin to purified PspC and to PspC-expressing pneumococci. In contrast, Factor H, which binds to the N-terminal part of mature PspC molecules, did not interfere with the PspC-vitronectin interaction. Using a series of vitronectin peptides, the C-terminal heparin-binding domain was shown to be essential for the interaction of soluble vitronectin with PspC. Binding experiments with immobilized vitronectin suggested a region N-terminal to the identified heparin-binding domain as an additional binding region for PspC, suggesting that soluble, immobilized, as well as cellularly bound vitronectin possesses different conformations. Finally, vitronectin bound to PspC was functionally active and inhibited the deposition of the terminal complement complex. In conclusion, this study identifies and characterizes (on the molecular level) the interaction between the pneumococcal adhesin PspC and the human glycoprotein vitronectin.


Asunto(s)
Proteínas Bacterianas/metabolismo , Streptococcus pneumoniae/metabolismo , Vitronectina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética , Vitronectina/química , Vitronectina/genética
12.
Microbiology (Reading) ; 158(Pt 3): 771-780, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22222496

RESUMEN

Lactococcus lactis is a non-pathogenic bacterium that is used in the food industry but is also used as a heterologous host to reveal protein functions of pathogenic bacteria. The adhesin PspC from Streptococcus pneumoniae is a choline-binding protein that is non-covalently anchored to the bacterial cell wall. To assess the exclusive impact of pneumococcal surface protein C (PspC) on the interplay with its host we generated recombinant L. lactis producing a nisin-inducible and covalently anchored variant of PspC on the lactococcal cell surface. A translational fusion of the 5'-end of pspC3.4 with the 3'-end of hic (pspC11.4) was designed to decorate the surface of L. lactis with a chimeric PspC. The PspC3.4 part comprises the first 281 aa residues of PspC3.4, while the Hic sequence consists of the proline-rich and sortase-anchored domain. The results demonstrated that PspC is sufficient for adhesion and subsequent invasion of host epithelial cells expressing the human polymeric Ig receptor (hpIgR). Moreover, invasion via hpIgR was even more pronounced when the chimeric PspC was produced by lactococci compared with pneumococci. This study shows also for the first time that PspC plays no significant role during phagocytosis by macrophages. In contrast, recruitment of Factor H via the PspC chimer has a dramatic effect on phagocytosis of recombinant but not wild-type lactococci, as Factor H interacts specifically with the amino-terminal part of PspC and mediates the contact with phagocytes. Furthermore, L. lactis expressing PspC increased intracellular calcium levels in pIgR-expressing epithelial cells, thus resembling the effect of pneumococci, which induced release of Ca(2+) from intracellular stores via the PspC-pIgR mechanism. In conclusion, expression of the chimeric PspC confers adhesive properties to L. lactis and indicates the potential of L. lactis as a suitable host to study the impact of individual bacterial factors on their capacity to interfere with the host and manipulate eukaryotic epithelial cells.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Expresión Génica , Lactococcus lactis/patogenicidad , Streptococcus pneumoniae/patogenicidad , Factores de Virulencia/metabolismo , Adhesivos , Animales , Proteínas Bacterianas/genética , Línea Celular , Perros , Células Epiteliales/microbiología , Humanos , Lactococcus lactis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores de Inmunoglobulina Polimérica/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pneumoniae/genética , Virulencia , Factores de Virulencia/genética
13.
FEMS Microbiol Lett ; 215(1): 89-95, 2002 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-12393206

RESUMEN

A 3.9-kb fragment of the genome of Pseudomonas putida H, containing the complete zwf-pgl-eda-operon, encoding glucose 6-phosphate dehydrogenase, 6-phosphogluconolactonase and 2-keto-3-deoxy-6-phosphogluconate-aldolase, respectively, and part of the divergently transcribed regulatory gene, hexR, was cloned and analyzed. The nucleotide sequences of these genes showed high similarities to the corresponding DNA sequences of P. putida KT2440 and also to sequences of Pseudomonas aeruginosa PAO1. Derivatives of strains H and KT2440, containing transcriptional lacZ fusions to P(zwf) were generated and used to study the expression of these operons. In both strains, this operon was induced by carbohydrates such as glucose, gluconate, fructose and glycerol. The transcription rate of the zwf-pgl-eda-operon was found to be about three times higher in the KT2440 background than in strain H. In both strains the induction of the zwf-pgl-eda-operon by carbohydrates during growth on carboxylic acids was not affected by carbon catabolite repression.


Asunto(s)
Aldehído-Liasas/genética , Hidrolasas de Éster Carboxílico/genética , Glucosafosfato Deshidrogenasa/genética , Pseudomonas putida/genética , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Operón/genética , Regiones Promotoras Genéticas/genética , Pseudomonas putida/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...