Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Ann N Y Acad Sci ; 1525(1): 61-69, 2023 07.
Article En | MEDLINE | ID: mdl-37199228

Seasonal changes in food intake and adiposity in many animal species are triggered by changes in the photoperiod. These latter changes are faithfully transduced into a biochemical signal by melatonin secreted by the pineal gland. Seasonal variations, encoded by melatonin, are integrated by third ventricular tanycytes of the mediobasal hypothalamus through the detection of the thyroid-stimulating hormone (TSH) released from the pars tuberalis. The mediobasal hypothalamus is a critical brain region that maintains energy homeostasis by acting as an interface between the neural networks of the central nervous system and the periphery to control metabolic functions, including ingestive behavior, energy homeostasis, and reproduction. Among the cells involved in the regulation of energy balance and the blood-hypothalamus barrier (BHB) plasticity are tanycytes. Increasing evidence suggests that anterior pituitary hormones, specifically TSH, traditionally considered to have unitary functions in targeting single endocrine sites, display actions on multiple somatic tissues and central neurons. Notably, modulation of tanycytic TSH receptors seems critical for BHB plasticity in relation to energy homeostasis, but this needs to be proven.


Melatonin , Animals , Melatonin/physiology , Ependymoglial Cells/metabolism , Hypothalamus/physiology , Brain/metabolism , Thyrotropin/metabolism , Seasons , Homeostasis
2.
Neurobiol Stress ; 22: 100505, 2023 Jan.
Article En | MEDLINE | ID: mdl-36620306

Background: Stress exposure is a key risk factor for the development of major depressive disorder and posttraumatic stress disorder. Enhancing stress resilience in at-risk populations could potentially protect against stress-induced disorders. The administration of ketamine one week prior to an acute stressor prevents the development of stress-induced depressive-like behavior in rodents. This study aimed to test if the prophylactic effect of ketamine against stress also applies to humans. Methods: We conducted a double-blind, placebo-controlled study wherein 24 healthy subjects (n = 11 males) were randomized to receive either ketamine (0.5 mg/kg) or midazolam (0.045 mg/kg) intravenously one week prior to an acute stress [Trier Social Stress Test (TSST)]. The primary endpoint was the anxious-composed subscale of the Profile of Mood States Bipolar Scale (POMS-Bi) administered immediately after the TSST. Salivary and plasma cortisol and salivary alpha amylase were also measured at 15-min intervals for 60 min following the stressor, as proxies of hypothalamic pituitary adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axis activity, respectively. Results: Compared to the midazolam group (n = 12), the ketamine group (n = 12) showed a moderate to large (Cohen's d = 0.7) reduction in levels of anxiety immediately following stress, although this was not significant (p = 0.06). There was no effect of group on change in salivary cortisol or salivary alpha amylase following stress. We conducted a secondary analysis excluding one participant who did not show an expected correlation between plasma and salivary cortisol (n = 23, ketamine n = 11). In this subgroup, we observed a significant reduction in the level of salivary alpha amylase in the ketamine group compared to midazolam (Cohen's d = 0.7, p = 0.03). No formal adjustment for multiple testing was made as this is a pilot study and all secondary analyses are considered hypothesis-generating. Conclusions: Ketamine was associated with a numeric reduction in TSST-induced anxiety, equivalent to a medium-to-large effect size. However, this did not reach statistical significance . In a subset of subjects, ketamine appeared to blunt SAM reactivity following an acute stressor. Future studies with larger sample size are required to further investigate the pro-resilient effect of ketamine.

3.
Nature ; 603(7901): 470-476, 2022 03.
Article En | MEDLINE | ID: mdl-35236988

Alzheimer's disease has a higher incidence in older women, with a spike in cognitive decline that tracks with visceral adiposity, dysregulated energy homeostasis and bone loss during the menopausal transition1,2. Inhibiting the action of follicle-stimulating hormone (FSH) reduces body fat, enhances thermogenesis, increases bone mass and lowers serum cholesterol in mice3-7. Here we show that FSH acts directly on hippocampal and cortical neurons to accelerate amyloid-ß and Tau deposition and impair cognition in mice displaying features of Alzheimer's disease. Blocking FSH action in these mice abrogates the Alzheimer's disease-like phenotype by inhibiting the neuronal C/EBPß-δ-secretase pathway. These data not only suggest a causal role for rising serum FSH levels in the exaggerated Alzheimer's disease pathophysiology during menopause, but also reveal an opportunity for treating Alzheimer's disease, obesity, osteoporosis and dyslipidaemia with a single FSH-blocking agent.


Alzheimer Disease , Follicle Stimulating Hormone , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Bone Density , Cognition , Female , Follicle Stimulating Hormone/metabolism , Humans , Mice , Thermogenesis
...