Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5503, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951531

RESUMEN

Proline is widely known as the only proteogenic amino acid with a secondary amine. In addition to its crucial role in protein structure, the secondary amino acid modulates neurotransmission and regulates the kinetics of signaling proteins. To understand the structural basis of proline import, we solved the structure of the proline transporter SIT1 in complex with the COVID-19 viral receptor ACE2 by cryo-electron microscopy. The structure of pipecolate-bound SIT1 reveals the specific sequence requirements for proline transport in the SLC6 family and how this protein excludes amino acids with extended side chains. By comparing apo and substrate-bound SIT1 states, we also identify the structural changes that link substrate release and opening of the cytoplasmic gate and provide an explanation for how a missense mutation in the transporter causes iminoglycinuria.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Microscopía por Crioelectrón , Prolina , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Prolina/metabolismo , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , COVID-19/virología , COVID-19/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/química , Modelos Moleculares
2.
J Mol Biol ; 436(16): 168665, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878854

RESUMEN

Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking. While generating protein binders to 27 SLCs, we produced full length protein or cell lines as input material for binder generation by selected binder generation platforms. As a result, we obtained 525 binders for 22 SLCs. We validated the binders with a cell-based validation workflow using immunofluorescent and immunoprecipitation methods to process all obtained binders. Finally, we demonstrated the potential applications of the binders that passed our validation pipeline in structural, biochemical, and biological applications using the exemplary protein SLC12A6, an ion transporter relevant in human disease. With this work, we were able to generate easily renewable and highly specific binders against SLCs, which will greatly facilitate the study of this neglected protein family. We hope that the process will serve as blueprint for the generation of binders against the entire superfamily of SLC transporters.


Asunto(s)
Unión Proteica , Proteínas Transportadoras de Solutos , Humanos , Proteínas Transportadoras de Solutos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/química , Células HEK293
3.
Structure ; 32(8): 1137-1149.e4, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38815576

RESUMEN

Two pore channels are lysosomal cation channels with crucial roles in tumor angiogenesis and viral release from endosomes. Inhibition of the two-pore channel 2 (TPC2) has emerged as potential therapeutic strategy for the treatment of cancers and viral infections, including Ebola and COVID-19. Here, we demonstrate that antagonist SG-094, a synthetic analog of the Chinese alkaloid medicine tetrandrine with increased potency and reduced toxicity, induces asymmetrical structural changes leading to a single binding pocket at only one intersubunit interface within the asymmetrical dimer. Supported by functional characterization of mutants by Ca2+ imaging and patch clamp experiments, we identify key residues in S1 and S4 involved in compound binding to the voltage sensing domain II. SG-094 arrests IIS4 in a downward shifted state which prevents pore opening via the IIS4/S5 linker, hence resembling gating modifiers of canonical VGICs. These findings may guide the rational development of new therapeutics antagonizing TPC2 activity.


Asunto(s)
Canales de Calcio , Humanos , Canales de Calcio/metabolismo , Canales de Calcio/química , Sitios de Unión , Lisosomas/metabolismo , Células HEK293 , Unión Proteica , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/metabolismo , Modelos Moleculares , Canales de Dos Poros
4.
J Med Chem ; 67(6): 4525-4540, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38294854

RESUMEN

Ten-eleven translocation enzymes (TETs) are Fe(II)/2-oxoglutarate (2OG) oxygenases that catalyze the sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in eukaryotic DNA. Despite their roles in epigenetic regulation, there is a lack of reported TET inhibitors. The extent to which 2OG oxygenase inhibitors, including clinically used inhibitors and oncometabolites, modulate DNA modifications via TETs has been unclear. Here, we report studies on human TET1-3 inhibition by a set of 2OG oxygenase-focused inhibitors, employing both enzyme-based and cellular assays. Most inhibitors manifested similar potencies for TET1-3 and caused increases in cellular 5hmC levels. (R)-2-Hydroxyglutarate, an oncometabolite elevated in isocitrate dehydrogenase mutant cancer cells, showed different degrees of inhibition, with TET1 being less potently inhibited than TET3 and TET2, potentially reflecting the proposed role of TET2 mutations in tumorigenesis. The results highlight the tractability of TETs as drug targets and provide starting points for selective inhibitor design.


Asunto(s)
Dioxigenasas , Glutaratos , Oxigenasas , Humanos , Epigénesis Genética , Oxigenasas de Función Mixta , Dioxigenasas/metabolismo , ADN , Metilación de ADN , Proteínas Proto-Oncogénicas/metabolismo
5.
J Vis Exp ; (199)2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37843272

RESUMEN

Solute carriers (SLCs) are membrane transporters that import and export a range of endogenous and exogenous substrates, including ions, nutrients, metabolites, neurotransmitters, and pharmaceuticals. Despite having emerged as attractive therapeutic targets and markers of disease, this group of proteins is still relatively underdrugged by current pharmaceuticals. Drug discovery projects for these transporters are impeded by limited structural, functional, and physiological knowledge, ultimately due to the difficulties in the expression and purification of this class of membrane-embedded proteins. Here, we demonstrate methods to obtain high-purity, milligram quantities of human SLC transporter proteins using codon-optimized gene sequences. In conjunction with a systematic exploration of construct design and high-throughput expression, these protocols ensure the preservation of the structural integrity and biochemical activity of the target proteins. We also highlight critical steps in the eukaryotic cell expression, affinity purification, and size-exclusion chromatography of these proteins. Ultimately, this workflow yields pure, functionally active, and stable protein preparations suitable for high-resolution structure determination, transport studies, small-molecule engagement assays, and high-throughput in vitro screening.


Asunto(s)
Proteínas de Transporte de Membrana , Proteínas Transportadoras de Solutos , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Transportadoras de Solutos/química , Proteínas Transportadoras de Solutos/metabolismo , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento , Proteínas de la Membrana/metabolismo , Preparaciones Farmacéuticas
6.
Sci Adv ; 9(39): eadg8229, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37774028

RESUMEN

In this study, we present the structures of human urea transporters UT-A and UT-B to characterize them at molecular level and to detail the mechanism of UT-B inhibition by its selective inhibitor, UTBinh-14. High-resolution structures of both transporters establish the structural basis for the inhibitor's selectivity to UT-B, and the identification of multiple binding sites for the inhibitor will aid with the development of drug lead molecules targeting both transporters. Our study also discovers phospholipids associating with the urea transporters by combining structural observations, native MS, and lipidomics analysis. These insights improve our understanding of urea transporter function at a molecular level and provide a blueprint for a structure-guided design of therapeutics targeting these transporters.


Asunto(s)
Proteínas de Transporte de Membrana , Urea , Humanos , Proteínas de Transporte de Membrana/metabolismo , Sitios de Unión , Urea/farmacología , Urea/metabolismo , Transportadores de Urea
7.
iScience ; 26(2): 105928, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36619367

RESUMEN

Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.

8.
Nat Commun ; 13(1): 4087, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840580

RESUMEN

Kv3 channels have distinctive gating kinetics tailored for rapid repolarization in fast-spiking neurons. Malfunction of this process due to genetic variants in the KCNC1 gene causes severe epileptic disorders, yet the structural determinants for the unusual gating properties remain elusive. Here, we present cryo-electron microscopy structures of the human Kv3.1a channel, revealing a unique arrangement of the cytoplasmic tetramerization domain T1 which facilitates interactions with C-terminal axonal targeting motif and key components of the gating machinery. Additional interactions between S1/S2 linker and turret domain strengthen the interface between voltage sensor and pore domain. Supported by molecular dynamics simulations, electrophysiological and mutational analyses, we identify several residues in the S4/S5 linker which influence the gating kinetics and an electrostatic interaction between acidic residues in α6 of T1 and R449 in the pore-flanking S6T helices. These findings provide insights into gating control and disease mechanisms and may guide strategies for the design of pharmaceutical drugs targeting Kv3 channels.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio Shaw , Microscopía por Crioelectrón , Humanos , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Canales de Potasio Shaw/química , Canales de Potasio Shaw/genética , Canales de Potasio Shaw/metabolismo , Electricidad Estática
9.
Front Bioeng Biotechnol ; 10: 871933, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600892

RESUMEN

Recombinant protein expression in eukaryotic insect cells is a powerful approach for producing challenging targets. However, due to incompatibility with standard baculoviral platforms and existing low-throughput methodology, the use of the Drosophila melanogaster "S2" cell line lags behind more common insect cell lines such as Sf9 or High-Five™. Due to the advantages of S2 cells, particularly for secreted and secretable proteins, the lack of a simple and parallelizable S2-based platform represents a bottleneck, particularly for biochemical and biophysical laboratories. Therefore, we developed FAS2FURIOUS, a simple and rapid S2 expression pipeline built upon an existing low-throughput commercial platform. FAS2FURIOUS is comparable in effort to simple E. coli systems and allows users to clone and test up to 46 constructs in just 2 weeks. Given the ability of S2 cells to express challenging targets, including receptor ectodomains, secreted glycoproteins, and viral antigens, FAS2FURIOUS represents an attractive orthogonal approach for protein expression in eukaryotic cells.

11.
Commun Biol ; 4(1): 934, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34345007

RESUMEN

We describe an analytical method for the identification, mapping and relative quantitation of glycopeptides from SARS-CoV-2 Spike protein. The method may be executed using a LC-TOF mass spectrometer, requires no specialized knowledge of glycan analysis and exploits the differential resolving power of reverse phase HPLC. While this separation technique resolves peptides with high efficiency, glycans are resolved poorly, if at all. Consequently, glycopeptides consisting of the same peptide bearing different glycan structures will all possess very similar retention times and co-elute. Rather than a disadvantage, we show that shared retention time can be used to map multiple glycan species to the same peptide and location. In combination with MSMS and pseudo MS3, we have constructed a detailed mass-retention time database for Spike glycopeptides. This database allows any accurate mass LC-MS laboratory to reliably identify and quantify Spike glycopeptides from a single overnight elastase digest in less than 90 minutes.


Asunto(s)
Glicopéptidos/química , Espectrometría de Masas/métodos , Glicoproteína de la Espiga del Coronavirus/química , Bases de Datos de Proteínas , Factores de Tiempo
12.
Front Immunol ; 12: 696791, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276688

RESUMEN

Peptide-based cancer vaccines rely upon the strong activation of the adaptive immune response to elicit its effector function. They have shown to be highly specific and safe, but have yet to prove themselves as an efficacious treatment for cancer in the clinic. This is for a variety of reasons, including tumour heterogeneity, self-tolerance, and immune suppression. Importance has been placed on the overall design of peptide-based cancer vaccines, which have evolved from simple peptide derivatives of a cancer antigen, to complex drugs; incorporating overlapping regions, conjugates, and delivery systems to target and stimulate different components of antigen presenting cells, and to bolster antigen cross-presentation. Peptide-based cancer vaccines are increasingly becoming more personalised to an individual's tumour antigen repertoire and are often combined with existing cancer treatments. This strategy ultimately aids in combating the shortcomings of a more generalised vaccine strategy and provides a comprehensive treatment, taking into consideration cancer cell variability and its ability to avoid immune interrogation.


Asunto(s)
Antígenos de Neoplasias/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Inmunoterapia , Neoplasias/tratamiento farmacológico , Péptidos/uso terapéutico , Inmunidad Adaptativa , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Diseño de Fármacos , Humanos , Neoplasias/inmunología , Péptidos/genética , Péptidos/inmunología , Microambiente Tumoral/inmunología , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/uso terapéutico
13.
Structure ; 29(11): 1241-1252.e5, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34233201

RESUMEN

Mutations in TREM2, a receptor expressed by microglia in the brain, are associated with an increased risk of neurodegeneration, including Alzheimer's disease. Numerous studies support a role for TREM2 in sensing damaging stimuli and triggering signaling cascades necessary for neuroprotection. Despite its significant role, ligands and regulators of TREM2 activation, and the mechanisms governing TREM2-dependent responses and its cleavage from the membrane, remain poorly characterized. Here, we present phage display generated antibody single-chain variable fragments (scFvs) to human TREM2 immunoglobulin-like domain. Co-crystal structures revealed the binding of two scFvs to an epitope on the TREM2 domain distal to the putative ligand-binding site. Enhanced functional activity was observed for oligomeric scFv species, which inhibited the production of soluble TREM2 in a HEK293 cell model. We hope that detailed characterization of their epitopes and properties will facilitate the use of these renewable binders as structural and functional biology tools for TREM2 research.


Asunto(s)
Epítopos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Células HEK293 , Humanos , Fagocitosis/fisiología , Anticuerpos de Cadena Única
14.
Nat Struct Mol Biol ; 28(6): 512-520, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34117479

RESUMEN

Very long chain fatty acids (VLCFAs) are essential building blocks for the synthesis of ceramides and sphingolipids. The first step in the fatty acid elongation cycle is catalyzed by the 3-keto acyl-coenzyme A (CoA) synthases (in mammals, ELOVL elongases). Although ELOVLs are implicated in common diseases, including insulin resistance, hepatic steatosis and Parkinson's, their underlying molecular mechanisms are unknown. Here we report the structure of the human ELOVL7 elongase, which comprises an inverted transmembrane barrel surrounding a 35-Å long tunnel containing a covalently attached product analogue. The structure reveals the substrate-binding sites in the narrow tunnel and an active site deep in the membrane. We demonstrate that chain elongation proceeds via an acyl-enzyme intermediate involving the second histidine in the canonical HxxHH motif. The unusual substrate-binding arrangement and chemistry suggest mechanisms for selective ELOVL inhibition, relevant for diseases where VLCFAs accumulate, such as X-linked adrenoleukodystrophy.


Asunto(s)
Elongasas de Ácidos Grasos/química , Ácidos Grasos/metabolismo , Adrenoleucodistrofia/enzimología , Animales , Sitios de Unión , Dominio Catalítico , Clonación Molecular , Coenzima A/metabolismo , Cristalografía por Rayos X , Elongasas de Ácidos Grasos/antagonistas & inhibidores , Elongasas de Ácidos Grasos/metabolismo , Células HEK293 , Histidina/química , Humanos , Imidazoles/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Sf9 , Espectrometría de Masa por Ionización de Electrospray/métodos , Relación Estructura-Actividad , Especificidad por Sustrato
15.
EMBO J ; 40(14): e107294, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34031912

RESUMEN

Potassium-coupled chloride transporters (KCCs) play crucial roles in regulating cell volume and intracellular chloride concentration. They are characteristically inhibited under isotonic conditions via phospho-regulatory sites located within the cytoplasmic termini. Decreased inhibitory phosphorylation in response to hypotonic cell swelling stimulates transport activity, and dysfunction of this regulatory process has been associated with various human diseases. Here, we present cryo-EM structures of human KCC3b and KCC1, revealing structural determinants for phospho-regulation in both N- and C-termini. We show that phospho-mimetic KCC3b is arrested in an inward-facing state in which intracellular ion access is blocked by extensive contacts with the N-terminus. In another mutant with increased isotonic transport activity, KCC1Δ19, this interdomain interaction is absent, likely due to a unique phospho-regulatory site in the KCC1 N-terminus. Furthermore, we map additional phosphorylation sites as well as a previously unknown ATP/ADP-binding pocket in the large C-terminal domain and show enhanced thermal stabilization of other CCCs by adenine nucleotides. These findings provide fundamentally new insights into the complex regulation of KCCs and may unlock innovative strategies for drug development.


Asunto(s)
Cloruros/metabolismo , Nucleótidos/metabolismo , Potasio/metabolismo , Simportadores/metabolismo , Animales , Línea Celular , Tamaño de la Célula , Humanos , Fosforilación/fisiología , Células Sf9 , Transducción de Señal/fisiología , Cotransportadores de K Cl
16.
Biochimie ; 185: 96-104, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33746066

RESUMEN

Cancer cells exhibit an altered metabolic phenotype, consuming higher levels of the amino acid glutamine. This metabolic reprogramming depends on increased mitochondrial glutaminase activity to convert glutamine to glutamate, an essential precursor for bioenergetic and biosynthetic processes in cells. Mammals encode the kidney-type (GLS) and liver-type (GLS2) glutaminase isozymes. GLS is overexpressed in cancer and associated with enhanced malignancy. On the other hand, GLS2 is either a tumor suppressor or an oncogene, depending on the tumor type. The GLS structure and activation mechanism are well known, while the structural determinants for GLS2 activation remain elusive. Here, we describe the structure of the human glutaminase domain of GLS2, followed by the functional characterization of the residues critical for its activity. Increasing concentrations of GLS2 lead to tetramer stabilization, a process enhanced by phosphate. In GLS2, the so-called "lid loop" is in a rigid open conformation, which may be related to its higher affinity for phosphate and lower affinity for glutamine; hence, it has lower glutaminase activity than GLS. The lower affinity of GLS2 for glutamine is also related to its less electropositive catalytic site than GLS, as indicated by a Thr225Lys substitution within the catalytic site decreasing the GLS2 glutamine concentration corresponding to half-maximal velocity (K0.5). Finally, we show that the Lys253Ala substitution (corresponding to the Lys320Ala in the GLS "activation" loop, formerly known as the "gating" loop) renders a highly active protein in stable tetrameric form. We conclude that the "activation" loop, a known target for GLS inhibition, may also be a drug target for GLS2.


Asunto(s)
Activación Enzimática , Glutaminasa/química , Hígado/enzimología , Sustitución de Aminoácidos , Catálisis , Glutaminasa/genética , Glutaminasa/metabolismo , Humanos , Mutación Missense , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
17.
Methods Mol Biol ; 2199: 23-43, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125643

RESUMEN

Structural genomics groups have identified the need to generate multiple truncated versions of each target to improve their success in producing a well-expressed, soluble, and stable protein and one that crystallizes and diffracts to a sufficient resolution for structural determination. At the Structural Genomics Consortium, we opted for the ligation-independent cloning (LIC) method which provides the throughput we desire to produce and screen many proteins in a parallel process. Here, we describe our LIC protocol for generating constructs in 96-well format and provide a choice of vectors suitable for expressing proteins in both E. coli and the baculovirus expression vector system (BEVS).


Asunto(s)
Baculoviridae/genética , Clonación Molecular , Escherichia coli , Expresión Génica , Vectores Genéticos/genética , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
18.
Methods Mol Biol ; 2199: 45-66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125644

RESUMEN

In Chapter 3 , we described the Structural Genomics Consortium (SGC) process for generating multiple constructs of truncated versions of each protein using LIC. In this chapter we provide a step-by-step procedure of our E. coli system for test expressing intracellular (soluble) proteins in a 96-well format that enables us to identify which proteins or truncated versions are expressed in a soluble and stable form suitable for structural studies. In addition, we detail the process for scaling up cultures for large-scale protein purification. This level of production is required to obtain sufficient quantities (i.e., milligram amounts) of protein for further characterization and/or structural studies (e.g., crystallization or cryo-EM experiments). Our standard process is purification by immobilized metal affinity chromatography (IMAC) using nickel resin followed by size exclusion chromatography (SEC), with additional procedures arising from the complexity of the protein itself.


Asunto(s)
Cromatografía de Afinidad , Cromatografía en Gel , Escherichia coli , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
19.
Methods Mol Biol ; 2199: 67-94, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125645

RESUMEN

This chapter describes the step-by-step methods employed by the Structural Genomics Consortium (SGC) for screening and producing proteins in the baculovirus expression vector system (BEVS). This eukaryotic expression system was selected and a screening process established in 2007 as a measure to tackle the more challenging kinase, RNA-DNA processing, and integral membrane protein families on our target list. Here, we discuss our platform for identifying soluble proteins from 3 mL of insect cell culture and describe the procedures involved in producing protein from liter-scale cultures.


Asunto(s)
Baculoviridae/genética , Vectores Genéticos/genética , Proteínas de la Membrana , Animales , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera
20.
Methods Mol Biol ; 2199: 95-115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125646

RESUMEN

This chapter describes the step-by-step methods employed by the Structural Genomics Consortium (SGC) for screening and producing proteins in the BacMam system. This eukaryotic expression system was selected and a screening process established in 2016 to enable production of highly challenging human integral membrane proteins (IMPs), which are a significant component of our target list. Here, we discuss our recently developed platform for identifying expression and monodispersity of IMPs from 3 mL of HEK293 cells.


Asunto(s)
Expresión Génica , Vectores Genéticos/genética , Proteínas de la Membrana , Células HEK293 , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA