Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Eur Radiol ; 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38388721

OBJECTIVE: This study analyzes the potential cost-effectiveness of integrating an artificial intelligence (AI)-assisted system into the differentiation of incidental renal lesions as benign or malignant on MR images during follow-up. MATERIALS AND METHODS: For estimation of quality-adjusted life years (QALYs) and lifetime costs, a decision model was created, including the MRI strategy and MRI + AI strategy. Model input parameters were derived from recent literature. Willingness to pay (WTP) was set to $100,000/QALY. Costs of $0 for the AI were assumed in the base-case scenario. Model uncertainty and costs of the AI system were assessed using deterministic and probabilistic sensitivity analysis. RESULTS: Average total costs were at $8054 for the MRI strategy and $7939 for additional use of an AI-based algorithm. The model yielded a cumulative effectiveness of 8.76 QALYs for the MRI strategy and of 8.77 for the MRI + AI strategy. The economically dominant strategy was MRI + AI. Deterministic and probabilistic sensitivity analysis showed high robustness of the model with the incremental cost-effectiveness ratio (ICER), which represents the incremental cost associated with one additional QALY gained, remaining below the WTP for variation of the input parameters. If increasing costs for the algorithm, the ICER of $0/QALY was exceeded at $115, and the defined WTP was exceeded at $667 for the use of the AI. CONCLUSIONS: This analysis, rooted in assumptions, suggests that the additional use of an AI-based algorithm may be a potentially cost-effective alternative in the differentiation of incidental renal lesions using MRI and needs to be confirmed in the future. CLINICAL RELEVANCE STATEMENT: These results hint at AI's the potential impact on diagnosing renal masses. While the current study urges careful interpretation, ongoing research is essential to confirm and seamlessly integrate AI into clinical practice, ensuring its efficacy in routine diagnostics. KEY POINTS: • This is a model-based study using data from literature where AI has been applied in the diagnostic workup of incidental renal lesions. • MRI + AI has the potential to be a cost-effective alternative in the differentiation of incidental renal lesions. • The additional use of AI can reduce costs in the diagnostic workup of incidental renal lesions.

2.
Sci Rep ; 14(1): 663, 2024 01 05.
Article En | MEDLINE | ID: mdl-38182726

In clinical practice, diagnosis of suspected carious lesions is verified by using conventional dental radiography (DR), including panoramic radiography (OPT), bitewing imaging, and dental X-ray. The aim of this study was to evaluate the use of magnetic resonance imaging (MRI) for caries visualization. Fourteen patients with clinically suspected carious lesions, verified by standardized dental examination including DR and OPT, were imaged with 3D isotropic T2-weighted STIR (short tau inversion recovery) and T1 FFE Black bone sequences. Intensities of dental caries, hard tissue and pulp were measured and calculated as aSNR (apparent signal to noise ratio) and aHTMCNR (apparent hard tissue to muscle contrast to noise ratio) in both sequences. Imaging findings were then correlated to clinical examination results. In STIR as well as in T1 FFE black bone images, aSNR and aHTMCNR was significantly higher in carious lesions than in healthy hard tissue (p < 0.001). Using water-sensitive STIR sequence allowed for detecting significantly lower aSNR and aHTMCNR in carious teeth compared to healthy teeth (p = 0.01). The use of MRI for the detection of caries is a promising imaging technique that may complement clinical exams and traditional imaging.


Dental Caries , Humans , Dental Caries/diagnostic imaging , Dental Caries Susceptibility , Magnetic Resonance Imaging , Chromosome Inversion , Health Status
3.
Sci Rep ; 13(1): 19539, 2023 11 09.
Article En | MEDLINE | ID: mdl-37945590

When dealing with a newly emerging disease such as COVID-19, the impact of patient- and disease-specific factors (e.g., body weight or known co-morbidities) on the immediate course of the disease is largely unknown. An accurate prediction of the most likely individual disease progression can improve the planning of limited resources and finding the optimal treatment for patients. In the case of COVID-19, the need for intensive care unit (ICU) admission of pneumonia patients can often only be determined on short notice by acute indicators such as vital signs (e.g., breathing rate, blood oxygen levels), whereas statistical analysis and decision support systems that integrate all of the available data could enable an earlier prognosis. To this end, we propose a holistic, multimodal graph-based approach combining imaging and non-imaging information. Specifically, we introduce a multimodal similarity metric to build a population graph that shows a clustering of patients. For each patient in the graph, we extract radiomic features from a segmentation network that also serves as a latent image feature encoder. Together with clinical patient data like vital signs, demographics, and lab results, these modalities are combined into a multimodal representation of each patient. This feature extraction is trained end-to-end with an image-based Graph Attention Network to process the population graph and predict the COVID-19 patient outcomes: admission to ICU, need for ventilation, and mortality. To combine multiple modalities, radiomic features are extracted from chest CTs using a segmentation neural network. Results on a dataset collected in Klinikum rechts der Isar in Munich, Germany and the publicly available iCTCF dataset show that our approach outperforms single modality and non-graph baselines. Moreover, our clustering and graph attention increases understanding of the patient relationships within the population graph and provides insight into the network's decision-making process.


COVID-19 , Humans , Prognosis , Lung , Disease Progression , Hospitalization
4.
Eur Radiol ; 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37855855

OBJECTIVES: T2 STIR MRI sequences can detect preclinical changes associated with periodontal inflammation, i.e. intraosseous edema in the tooth-supporting bone. In this study, we assessed whether MRI can be used for monitoring periodontal disease. MATERIAL AND METHODS: In a prospective cohort study, we examined 35 patients with periodontitis between 10/2018 and 04/2019 by using 3D isotropic T2-weighted short tau inversion recovery (STIR) and Fast Field Echo T1-weighted Black bone sequences. All patients received standardized clinical exams before and three months after non-surgical periodontal therapy. Bone marrow edema extent was quantified in the STIR sequence at 922 sites before and after treatment. Results were compared with standard clinical findings. Non-parametric statistical analysis was performed. RESULTS: Non-surgical periodontal treatment caused significant improvement in mean probing depth (p < 0.001) and frequency of bleeding on probing (p < 0.001). The mean depth of osseous edema per site was reduced from a median [IQR] of 2 [1, 3] mm at baseline to 1 [0, 3] mm, (p < 0.001). Periodontal treatment reduced the frequency of sites with edema from 35 to 24% (p < 0.01). CONCLUSION: The decrease of periodontal bone marrow edema, as observed with T2 STIR MR imaging, is indicative of successful periodontal healing. CLINICAL RELEVANCE STATEMENT: T2 STIR hyperintense bone marrow edema in the periodontal bone decreases after treatment and can therefore be used to evaluate treatment success. Furthermore, MRI reveals new options to depict hidden aspects of periodontitis. KEY POINTS: • T2 STIR hyperintense periodontal intraosseous edema was prospectively investigated in 35 patients with periodontitis before and after treatment and compared to clinical outcomes. • The frequency of affected sites was reduced from 35 to 24% (p < 0.001), and mean edema depth was reduced from a median [IQR] of 2 [1, 3] mm at baseline to 1 [0, 3] mm 3 months after treatment. (p < 0.001). • T2 STIR sequences can be used to monitor the posttreatment course of periodontitis.

5.
Quant Imaging Med Surg ; 13(9): 5472-5482, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37711780

Background: To investigate reproducibility of texture features and volumetric bone mineral density (vBMD) extracted from trabecular bone in the thoracolumbar spine in routine clinical multi-detector computed tomography (MDCT) data in a single scanner environment. Methods: Patients who underwent two routine clinical thoraco-abdominal MDCT exams at a single scanner with a time interval of 6 to 26 months (n=203, 131 males; time interval mean, 13 months; median, 12 months) were included in this observational study. Exclusion criteria were metabolic and hematological disorders, bone metastases, use of bone-active medications, and history of osteoporotic vertebral fractures (VFs) or prior diagnosis of osteoporosis. A convolutional neural network (CNN)-based framework was used for automated spine labeling and segmentation (T5-L5), asynchronous Hounsfield unit (HU)-to-BMD calibration, and correction for the intravenous contrast medium phase. Vertebral vBMD and six texture features [varianceglobal, entropy, short-run emphasis (SRE), long-run emphasis (LRE), run-length non-uniformity (RLN), and run percentage (RP)] were extracted for mid- (T5-T8) and lower thoracic (T9-T12), and lumbar vertebrae (L1-L5), respectively. Relative annual changes were calculated in texture features and vBMD for each vertebral level and sorted by sex, and changes were checked for statistical significance (P<0.05) using paired t-tests. Root mean square coefficient of variation (RMSCV) and root mean square error (RMSE) were calculated as measures of variability. Results: SRE, LRE, RLN, and RP exhibited substantial reproducibility with RMSCV-values below 2%, for both sexes and at all spine levels, while vBMD was less reproducible (RMSCV =11.9-16.2%). Entropy showed highest variability (RMSCV =4.34-7.69%) due to statistically significant increases [range, mean ± standard deviation: (4.40±5.78)% to (8.36±8.66)%, P<0.001]. RMSCV of varianceglobal ranged from 1.60% to 3.03%. Conclusions: Opportunistic assessment of texture features in a single scanner environment using the presented CNN-based framework yields substantial reproducibility, outperforming vBMD reproducibility. Lowest scan-rescan variability was found for higher-order texture features. Further studies are warranted to determine, whether microarchitectural changes to the trabecular bone may be assessed through texture features.

6.
Front Endocrinol (Lausanne) ; 14: 1207949, 2023.
Article En | MEDLINE | ID: mdl-37529605

Objectives: To investigate vertebral osteoporotic fracture (VF) prediction by automatically extracted trabecular volumetric bone mineral density (vBMD) from routine CT, and to compare the model with fracture prevalence-based prediction models. Methods: This single-center retrospective study included patients who underwent two thoraco-abdominal CT scans during clinical routine with an average inter-scan interval of 21.7 ± 13.1 months (range 5-52 months). Automatic spine segmentation and vBMD extraction was performed by a convolutional neural network framework (anduin.bonescreen.de). Mean vBMD was calculated for levels T5-8, T9-12, and L1-5. VFs were identified by an expert in spine imaging. Odds ratios (ORs) for prevalent and incident VFs were calculated for vBMD (per standard deviation decrease) at each level, for baseline VF prevalence (yes/no), and for baseline VF count (n) using logistic regression models, adjusted for age and sex. Models were compared using Akaike's and Bayesian information criteria (AIC & BIC). Results: 420 patients (mean age, 63 years ± 9, 276 males) were included in this study. 40 (25 female) had prevalent and 24 (13 female) had incident VFs. Individuals with lower vBMD at any spine level had higher odds for VFs (L1-5, prevalent VF: OR,95%-CI,p: 2.2, 1.4-3.5,p=0.001; incident VF: 3.5, 1.8-6.9,p<0.001). In contrast, VF status (2.15, 0.72-6.43,p=0.170) and count (1.38, 0.89-2.12,p=0.147) performed worse in incident VF prediction. Information criteria revealed best fit for vBMD-based models (AIC vBMD=165.2; VF status=181.0; count=180.7). Conclusions: VF prediction based on automatically extracted vBMD from routine clinical MDCT outperforms prediction models based on VF status and count. These findings underline the importance of opportunistic quantitative osteoporosis screening in clinical routine MDCT data.


Osteoporotic Fractures , Spinal Fractures , Male , Humans , Female , Middle Aged , Bone Density/physiology , Spinal Fractures/diagnostic imaging , Spinal Fractures/epidemiology , Retrospective Studies , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Bayes Theorem , Tomography, X-Ray Computed/methods , Prevalence
7.
Clin Oral Investig ; 27(9): 5403-5412, 2023 Sep.
Article En | MEDLINE | ID: mdl-37464086

OBJECTIVES: To detect and evaluate early signs of apical periodontitis using MRI based on a 3D short-tau-inversion-recovery (STIR) sequence compared to conventional panoramic radiography (OPT) and periapical radiographs in patients with apical periodontitis. MATERIALS AND METHODS: Patients with clinical evidence of periodontal disease were enrolled prospectively and received OPT as well as MRI of the viscerocranium including a 3D-STIR sequence. The MRI sequences were assessed for the occurrence and extent of bone changes associated with apical periodontitis including bone edema, periradicular cysts, and dental granulomas. OPTs and intraoral periapical radiographs, if available, were assessed for corresponding periapical radiolucencies using the periapical index (PAI). RESULTS: In total, 232 teeth of 37 patients (mean age 62±13.9 years, 18 women) were assessed. In 69 cases reactive bone edema was detected on MRI with corresponding radiolucency according to OPT. In 105 cases edema was detected without corresponding radiolucency on OPT. The overall extent of edema measured on MRI was significantly larger compared to the radiolucency on OPT (mean: STIR 2.4±1.4 mm, dental radiograph 1.3±1.2 mm, OPT 0.8±1.1 mm, P=0.01). The overall PAI score was significantly higher on MRI compared to OPT (mean PAI: STIR 1.9±0.7, dental radiograph 1.3±0.5, OPT 1.2±0.7, P=0.02). CONCLUSION: Early detection and assessment of bone changes of apical periodontitis using MRI was feasible while the extent of bone edema measured on MRI exceeded the radiolucencies measured on OPT. CLINICAL RELEVANCE: In clinical routine, dental MRI might be useful for early detection and assessment of apical periodontitis before irreversible bone loss is detected on conventional panoramic and intraoral periapical radiographs.


Periapical Periodontitis , Tooth, Nonvital , Humans , Female , Middle Aged , Aged , Root Canal Therapy , Periapical Periodontitis/complications , Radiography , Magnetic Resonance Imaging , Tooth, Nonvital/diagnostic imaging
8.
Clin Oral Investig ; 27(9): 5063-5072, 2023 Sep.
Article En | MEDLINE | ID: mdl-37382718

OBJECTIVE: To determine the accuracy of maxillary positioning using computer-designed and manufactured occlusal splints or patient-specific implants in orthognathic surgery. MATERIAL AND METHODS: A retrospective analysis of 28 patients that underwent virtually planned orthognathic surgery with maxillary Le Fort I osteotomy either using VSP-generated splints (n = 13) or patient-specific implants (PSI) (n = 15) was conducted. The accuracy and surgical outcome of both techniques were compared by superimposing preoperative surgical planning with postoperative CT scans and measurement of translational and rotational deviation for each patient. RESULTS: The 3D global geometric deviation between the planned position and the postoperative outcome was 0.60 mm (95%-CI 0.46-0.74, range 0.32-1.11 mm) for patients with PSI and 0.86 mm (95%-CI 0.44-1.28, range 0.09-2.60 mm) for patients with surgical splints. Postoperative differences for absolute and signed single linear deviations between planned and postoperative position were a little higher regarding the x-axis and pitch but lower regarding the y- and z-axis as well as yaw and roll for PSI compared to surgical splints. There were no significant differences regarding global geometric deviation, absolute and signed linear deviations in the x-, y-, and z-axis, and rotations (yaw, pitch, and roll) between both groups. CONCLUSIONS: Regarding accuracy for positioning of maxillary segments after Le Fort I osteotomy in orthognathic surgery patient-specific implants and surgical splints provide equivalent high accuracy. CLINICAL RELEVANCE: Patient-specific implants for maxillary positioning and fixation facilitate the concept of splintless orthognathic surgery and can be reliably used in clinical routines.


Dental Implants , Orthognathic Surgery , Orthognathic Surgical Procedures , Surgery, Computer-Assisted , Humans , Occlusal Splints , Orthognathic Surgical Procedures/methods , Retrospective Studies , Surgery, Computer-Assisted/methods , Maxilla/surgery , Computers , Imaging, Three-Dimensional/methods , Osteotomy, Le Fort/methods
9.
Clin Oral Investig ; 27(7): 3705-3712, 2023 Jul.
Article En | MEDLINE | ID: mdl-37039958

OBJECTIVES: Maxillary sinus mucositis is frequently associated with odontogenic foci. Periapical inflammation of maxillary molars and premolars cannot be visualized directly using radiation-based imaging. The purpose of this study was to answer the following clinical question: among patients with periapical inflammatory processes in the maxilla, does the use of magnetic resonance imaging (MRI), as compared to conventional periapical (AP) and panoramic radiography (OPT), improve diagnostic accuracy? METHODS: Forty-two subjects with generalized periodontitis were scanned on a 3 T MRI. Sixteen asymptomatic subjects with mucosal swelling of the maxillary sinus were enrolled in the study. Periapical edema was assessed using short tau inversion recovery (STIR) sequence. Apical osteolysis and mucosal swelling were assessed by MRI, AP, and OPT imaging using the periapical index score (PAI). Comparisons between groups were performed with chi-squared tests with Yates' correction. Significance was set at p < 0.05. RESULTS: Periapical lesions of maxillary premolars and molars were identified in 16 subjects, 21 sinuses, and 58 teeth. Bone edema and PAI scores were significantly higher using MRI as compared to OPT and AP (p < 0.05). Using the STIR sequence, a significant association of PAI score > 1 and the presence of mucosal swelling in the maxillary sinus was detected (p = 0.03). CONCLUSION: Periapical inflammation and maxillary mucositis could be visualized using STIR imaging. The use of MRI may help detect early, subtle inflammatory changes in the periapical tissues surrounding maxillary dentition. Early detection could guide diagnostic criteria, as well as treatment and prevention.


Mucositis , Periapical Periodontitis , Humans , Maxillary Sinus/diagnostic imaging , Maxillary Sinus/pathology , Feasibility Studies , Inflammation/diagnostic imaging , Inflammation/pathology , Periapical Periodontitis/complications , Magnetic Resonance Imaging , Cone-Beam Computed Tomography/methods
10.
Ultraschall Med ; 44(5): e248-e256, 2023 Oct.
Article En | MEDLINE | ID: mdl-36646113

PURPOSE: This prospective two-centre study investigated localisation-dependent lesion patterns in COVID-19 with standard lung ultrasonography (LUS) and their relationship with thoracic computed tomography (CT) and clinical parameters. MATERIALS AND METHODS: Between April 2020 and April 2021, 52 SARS-CoV-2-positive patients in two hospitals were examined by means of LUS for "B-lines", fragmented pleura, consolidation and air bronchogram in 12 lung regions and for pleural effusions. A newly developed LUS score based on the number of features present was correlated with clinical parameters (respiration, laboratory parameters) and the CT and analysed with respect to the 30- and 60-day outcome. All patients were offered an outpatient LUS follow-up. RESULTS: The LUS and CT showed a bilateral, partially posteriorly accentuated lesion distribution pattern. 294/323 (91%) of CT-detected lesions were pleural. The LUS score showed an association with respiratory status and C-reactive protein; the correlation with the CT score was weak (Spearman's rho = 0.339, p < 0.001). High LUS scores on admission were also observed in patients who were discharged within 30 days. LUS during follow-up showed predominantly declining LUS scores. CONCLUSION: The LUS score reflected the clinical condition of the patients. No conclusion could be made on the prognostic value of the LUS, because of the low event rate. The LUS and CT score showed no sufficient correlation. This is probably due to different physical principles, which is why LUS could be of complementary value.

11.
JAMA Netw Open ; 6(1): e2253370, 2023 01 03.
Article En | MEDLINE | ID: mdl-36705919

Importance: Differentiating between malignant and benign etiology in large-bowel wall thickening on computed tomography (CT) images can be a challenging task. Artificial intelligence (AI) support systems can improve the diagnostic accuracy of radiologists, as shown for a variety of imaging tasks. Improvements in diagnostic performance, in particular the reduction of false-negative findings, may be useful in patient care. Objective: To develop and evaluate a deep learning algorithm able to differentiate colon carcinoma (CC) and acute diverticulitis (AD) on CT images and analyze the impact of the AI-support system in a reader study. Design, Setting, and Participants: In this diagnostic study, patients who underwent surgery between July 1, 2005, and October 1, 2020, for CC or AD were included. Three-dimensional (3-D) bounding boxes including the diseased bowel segment and surrounding mesentery were manually delineated and used to develop a 3-D convolutional neural network (CNN). A reader study with 10 observers of different experience levels was conducted. Readers were asked to classify the testing cohort under reading room conditions, first without and then with algorithmic support. Main Outcomes and Measures: To evaluate the diagnostic performance, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for all readers and reader groups with and without AI support. Metrics were compared using the McNemar test and relative and absolute predictive value comparisons. Results: A total of 585 patients (AD: n = 267, CC: n = 318; mean [SD] age, 63.2 [13.4] years; 341 men [58.3%]) were included. The 3-D CNN reached a sensitivity of 83.3% (95% CI, 70.0%-96.6%) and specificity of 86.6% (95% CI, 74.5%-98.8%) for the test set, compared with the mean reader sensitivity of 77.6% (95% CI, 72.9%-82.3%) and specificity of 81.6% (95% CI, 77.2%-86.1%). The combined group of readers improved significantly with AI support from a sensitivity of 77.6% to 85.6% (95% CI, 81.3%-89.3%; P < .001) and a specificity of 81.6% to 91.3% (95% CI, 88.1%-94.5%; P < .001). Artificial intelligence support significantly reduced the number of false-negative and false-positive findings (NPV from 78.5% to 86.4% and PPV from 80.9% to 90.8%; P < .001). Conclusions and Relevance: The findings of this study suggest that a deep learning model able to distinguish CC and AD in CT images as a support system may significantly improve the diagnostic performance of radiologists, which may improve patient care.


Carcinoma , Deep Learning , Diverticulitis , Male , Humans , Middle Aged , Artificial Intelligence , Retrospective Studies , Algorithms , Tomography, X-Ray Computed , Colon
12.
Clin Oral Investig ; 27(3): 1227-1233, 2023 Mar.
Article En | MEDLINE | ID: mdl-36208329

OBJECTIVES: To assess and compare the diagnostic performance of CT-like images based on a three- dimensional (3D) T1-weighted spoiled gradient-echo sequence (3D T1 GRE) with CT in patients with acute traumatic fractures of the mandible. MATERIALS AND METHODS: Subjects with acute mandibular fractures diagnosed on conventional CT were prospectively recruited and received an additional 3 T MRI with a CT-like 3D T1 GRE sequence. The images were assessed by two radiologists with regard to fracture localization, degree of dislocation, and number of fragments. Bone to soft tissue contrast, diagnostic confidence, artifacts, and overall image quality were rated using a five-point Likert-scale. Agreement of measurements was assessed using an independent t-test. RESULTS: Fourteen subjects and 22 fracture sites were included (26 ± 3.9 years; 4 females, 10 males). All traumatic fractures were accurately detected on CT-like MRI (n = 22, κ 1.00 (95% CI 1.00-1.00)). There was no statistically significant difference in the assessment of the fracture dislocation (axial mean difference (MD) 0.06 mm, p = 0.93, coronal MD, 0.08 mm, p = 0.89 and sagittal MD, 0.04 mm, p = 0.96). The agreement for the fracture classification as well as the inter- and intra-rater agreement was excellent (range κ 0.92-0.98 (95% CI 0.96-0.99)). CONCLUSION: Assessment of mandibular fractures was feasible and accurate using CT-like MRI based on a 3D T1 GRE sequence and is comparable to conventional CT. CLINICAL RELEVANCE: For the assessment of acute mandibular fractures, CT-like MRI might become a useful alternative to CT in order to reduce radiation exposure particularly in young patients.


Mandibular Fractures , Male , Female , Humans , Young Adult , Feasibility Studies , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed
13.
Clin Neuroradiol ; 33(1): 187-197, 2023 Mar.
Article En | MEDLINE | ID: mdl-35881162

OBJECTIVE: Here we compare the procedural and clinical outcome of patients undergoing thrombectomy with running thrombolysis to matched controls with completed intravenous therapy and an only marginally overlapping activity. METHODS: Patients from 25 sites in Germany were included, who presented with an acute ischemic stroke. Patients' baseline characteristics (including ASPECTS, NIHSS and mRS), grade of reperfusion, and functional outcome 24 h and at day 90 after intervention were extracted from the German Stroke Registry (n = 2566). In a case-control design we stepwise matched the groups due to age, sex and time to groin puncture and time to flow restoration. RESULTS: In the initial cohort (overlap group n = 864, control group n = 1702) reperfusion status (median TICI in overlap group vs. control group: 3 vs. 2b), NIHSS after 24 h, early neurological improvement parameters, mRS at 24 h and at day 90 were significantly better in the overlap group (p < 0.001) with a similar risk of bleeding (2.9% vs. 2.4%) and death (18% vs. 22%). After adjustment mRS at day 90 still showed a trend for lower disability scores in the overlap group (3 IQR 1-5 vs. 3 IQR 1-6, p = 0.09). While comparable bleeding risk could be maintained (4% in both groups), there were significantly more deaths in the control group (18% vs. 30%, p = 0.006). CONCLUSION: The presented results support the approach of continuing and completing a simultaneous administration of intravenous thrombolysis during mechanical thrombectomy procedures.


Ischemic Stroke , Stroke , Humans , Ischemic Stroke/etiology , Stroke/drug therapy , Stroke/etiology , Thrombectomy/methods , Thrombolytic Therapy , Registries , Case-Control Studies
14.
Cancers (Basel) ; 14(23)2022 Nov 22.
Article En | MEDLINE | ID: mdl-36497223

BACKGROUND: To assess the performance of prospectively accelerated and deep learning (DL) reconstructed T2-weighted (T2w) imaging in volunteers and patients with histologically proven prostate cancer (PCa). METHODS: Prospectively undersampled T2w datasets were acquired with acceleration factors of 1.7 (reference), 3.4 and 4.8 in 10 healthy volunteers and 23 patients with histologically proven PCa. Image reconstructions using compressed SENSE (C-SENSE) and a combination of C-SENSE and DL-based artificial intelligence (C-SENSE AI) were analyzed. Qualitative image comparison was performed using a 6-point Likert scale (overall image quality, noise, motion artifacts, lesion detection, diagnostic certainty); the T2 and PI-RADS scores were compared between the two reconstructions. Additionally, quantitative image parameters were assessed (apparent SNR, apparent CNR, lesion size, line profiles). RESULTS: All C-SENSE AI-reconstructed images received a significantly higher qualitative rating compared to the C-SENSE standard images. Analysis of the quantitative parameters supported this finding, with significantly higher aSNR and aCNR. The line profiles demonstrated a significantly steeper signal change at the border of the prostatic lesion and the adjacent normal tissue in the C-SENSE AI-reconstructed images, whereas the T2 and PI-RADS scores as well as the lesion size did not differ. CONCLUSION: In this prospective study, we demonstrated the clinical feasibility of a novel C-SENSE AI reconstruction enabling a 58% acceleration in T2w imaging of the prostate while obtaining significantly better image quality.

15.
Biomedicines ; 10(9)2022 Aug 25.
Article En | MEDLINE | ID: mdl-36140176

Chemical shift encoding-based water−fat MRI (CSE-MRI)-derived proton density fat fraction (PDFF) has been used for non-invasive assessment of regional body fat distributions. More recently, texture analysis (TA) has been proposed to reveal even more detailed information about the vertebral or muscular composition beyond PDFF. The aim of this study was to investigate associations between vertebral bone marrow and paraspinal muscle texture features derived from CSE-MRI-based PDFF maps in a cohort of healthy subjects. In this study, 44 healthy subjects (13 males, 55 ± 30 years; 31 females, 39 ± 17 years) underwent 3T MRI including a six-echo three-dimensional (3D) spoiled gradient echo sequence used for CSE-MRI at the lumbar spine and the paraspinal musculature. The erector spinae muscles (ES), the psoas muscles (PS), and the vertebral bodies L1-4 (LS) were manually segmented. Mean PDFF values and texture features were extracted for each compartment. Features were compared between males and females using logistic regression analysis adjusted for age and body mass index (BMI). All texture features of ES except for Sum Average were significantly (p < 0.05) different between men and women. The three global texture features (Variance, Skewness, Kurtosis) for PS as well as LS showed a significant difference between male and female subjects (p < 0.05). Mean PDFF measured in PS and ES was significantly higher in females, but no difference was found for the vertebral bone marrow's PDFF. Partial correlation analysis between the texture features of the spine and the paraspinal muscles revealed a highly significant correlation for Variance(global) (r = 0.61 for ES, r = 0.62 for PS; p < 0.001 respectively). Texture analysis using PDFF maps based on CSE-MRI revealed differences between healthy male and female subjects. Global texture features in the lumbar vertebral bone marrow allowed for differentiation between men and women, when the overall PDFF was not significantly different, indicating that PDFF maps may contain detailed and subtle textural information beyond fat fraction. The observed significant correlation of Variance(global) suggests a metabolic interrelationship between vertebral bone marrow and the paraspinal muscles.

16.
Front Endocrinol (Lausanne) ; 13: 900356, 2022.
Article En | MEDLINE | ID: mdl-35898459

Purpose: Osteoporosis is prevalent and entails alterations of vertebral bone and marrow. Yet, the spine is also a common site of metastatic spread. Parameters that can be non-invasively measured and could capture these alterations are the volumetric bone mineral density (vBMD), proton density fat fraction (PDFF) as an estimate of relative fat content, and failure displacement and load from finite element analysis (FEA) for assessment of bone strength. This study's purpose was to investigate if osteoporotic and osteoblastic metastatic changes in lumbar vertebrae can be differentiated based on the abovementioned parameters (vBMD, PDFF, and measures from FEA), and how these parameters correlate with each other. Materials and Methods: Seven patients (3 females, median age: 77.5 years) who received 3-Tesla magnetic resonance imaging (MRI) and multi-detector computed tomography (CT) of the lumbar spine and were diagnosed with either osteoporosis (4 patients) or diffuse osteoblastic metastases (3 patients) were included. Chemical shift encoding-based water-fat MRI (CSE-MRI) was used to extract the PDFF, while vBMD was extracted after automated vertebral body segmentation using CT. Segmentation masks were used for FEA-based failure displacement and failure load calculations. Failure displacement, failure load, and PDFF were compared between patients with osteoporotic vertebrae versus patients with osteoblastic metastases, considering non-fractured vertebrae (L1-L4). Associations between those parameters were assessed using Spearman correlation. Results: Median vBMD was 59.3 mg/cm3 in osteoporotic patients. Median PDFF was lower in the metastatic compared to the osteoporotic patients (11.9% vs. 43.8%, p=0.032). Median failure displacement and failure load were significantly higher in metastatic compared to osteoporotic patients (0.874 mm vs. 0.348 mm, 29,589 N vs. 3,095 N, p=0.034 each). A strong correlation was noted between PDFF and failure displacement (rho -0.679, p=0.094). A very strong correlation was noted between PDFF and failure load (rho -0.893, p=0.007). Conclusion: PDFF as well as failure displacement and load allowed to distinguish osteoporotic from diffuse osteoblastic vertebrae. Our findings further show strong associations between PDFF and failure displacement and load, thus may indicate complimentary pathophysiological associations derived from two non-invasive techniques (CSE-MRI and CT) that inherently measure different properties of vertebral bone and marrow.


Osteoporosis , Protons , Aged , Female , Finite Element Analysis , Humans , Lumbar Vertebrae/diagnostic imaging , Magnetic Resonance Imaging/methods , Osteoporosis/diagnostic imaging , Water
17.
Eur J Nucl Med Mol Imaging ; 49(11): 3870-3877, 2022 09.
Article En | MEDLINE | ID: mdl-35606526

BACKGROUND AND PURPOSE: Treatment of oral squamous cell carcinoma (OSCC) is based on clinical exam, biopsy, and a precise imaging-based TNM-evaluation. A high sensitivity and specificity for magnetic resonance imaging (MRI) and F-18 FDG PET/CT are reported for N-staging. Nevertheless, staging of oral squamous cell carcinoma is most often based on computed tomography (CT) scans. This study aims to evaluate cost-effectiveness of MRI and PET/CT compared to standard of care imaging in initial staging of OSCC within the US Healthcare System. METHODS: A decision model was constructed using quality-adjusted life years (QALYs) and overall costs of different imaging strategies including a CT of the head, neck, and the thorax, MRI of the neck with CT of the thorax, and whole body F-18 FDG PET/CT using Markov transition simulations for different disease states. Input parameters were derived from literature and willingness to pay (WTP) was set to US $100,000/QALY. Deterministic sensitivity analysis of diagnostic parameters and costs was performed. Monte Carlo modeling was used for probabilistic sensitivity analysis. RESULTS: In the base-case scenario, total costs were at US $239,628 for CT, US $240,001 for MRI, and US $239,131 for F-18 FDG PET/CT whereas the model yielded an effectiveness of 5.29 QALYs for CT, 5.30 QALYs for MRI, and 5.32 QALYs for F-18 FDG PET/CT respectively. F-18 FDG PET/CT was the most cost-effective strategy over MRI as well as CT, and MRI was the cost-effective strategy over CT. Deterministic and probabilistic sensitivity analysis showed high robustness of the model with incremental cost effectiveness ratio remaining below US $100,000/QALY for a wide range of variability of input parameters. CONCLUSION: F-18 FDG PET/CT is the most cost-effective strategy in the initial N-staging of OSCC when compared to MRI and CT. Despite less routine use, both whole body PET/CT and MRI are cost-effective modalities in the N-staging of OSCC. Based on these findings, the implementation of PET/CT for initial staging could be suggested to help reduce costs while increasing effectiveness in OSCC.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/pathology , Cost-Benefit Analysis , Fluorodeoxyglucose F18 , Head and Neck Neoplasms/pathology , Humans , Magnetic Resonance Imaging , Mouth Neoplasms/diagnostic imaging , Mouth Neoplasms/pathology , Neoplasm Staging , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Radiopharmaceuticals , Squamous Cell Carcinoma of Head and Neck/pathology , Tomography, X-Ray Computed
19.
J Clin Med ; 10(23)2021 Nov 23.
Article En | MEDLINE | ID: mdl-34884172

Long-term health consequences in survivors of severe COVID-19 remain unclear. Eighteen COVID-19 patients admitted to the intensive care unit at the University Hospital Rechts der Isar, Munich, Germany, between 14 March and 23 June 2020, were prospectively followed-up at a median of 36, 75.5, 122 and 222 days after discharge. The health-related quality of life (HrQoL) (36-item Short Form Health Survey and St. George's Respiratory Questionnaire, SGRQ), cardiopulmonary function, laboratory parameters and chest imaging were assessed longitudinally. The HrQoL assessment revealed a reduced physical functioning, as well as increased SGRQ impact and symptoms scores that all improved over time but remained markedly impaired compared to the reference groups. The median radiological severity scores significantly declined; persistent abnormalities were found in 33.3% of the patients on follow-up. A reduced diffusion capacity was the most common abnormal pulmonary function parameter. The length of hospitalization correlated with role limitations due to physical problems, the SGRQ symptom and the impact score. In conclusion, in survivors of severe COVID-19, the pulmonary function and symptoms improve over time, but impairments in their physical function and diffusion capacity can persist over months. Longer follow-up studies with larger cohorts will be necessary to comprehensively characterize long-term sequelae upon severe COVID-19 and to identify patients at risk.

20.
Diagnostics (Basel) ; 11(10)2021 Oct 18.
Article En | MEDLINE | ID: mdl-34679627

In this study, the associations of cervical and lumbar paraspinal musculature based on a texture analysis of proton density fat fraction (PDFF) maps were investigated to identify gender- and anatomical location-specific structural patterns. Seventy-nine volunteers (25 men, 54 women) participated in the present study (mean age ± standard deviation: men: 43.7 ± 24.6 years; women: 37.1 ± 14.0 years). Using manual segmentations of the PDFF maps, texture analysis was performed and texture features were extracted. A significant difference in the mean PDFF between men and women was observed in the erector spinae muscle (p < 0.0001), whereas the mean PDFF did not significantly differ in the cervical musculature and the psoas muscle (p > 0.05 each). Among others, Variance(global) and Kurtosis(global) showed significantly higher values in men than in women in all included muscle groups (p < 0.001). Not only the mean PDFF values (p < 0.001) but also Variance(global) (p < 0.001), Energy (p < 0.001), Entropy (p = 0.01), Homogeneity (p < 0.001), and Correlation (p = 0.037) differed significantly between the three muscle compartments. The cervical and lumbar paraspinal musculature composition seems to be gender-specific and has anatomical location-specific structural patterns.

...