Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Article En | MEDLINE | ID: mdl-38684469

Outcome prediction for live-donor kidney transplantation improves clinical and patient decisions and donor selection. However, the concurrently used models are of limited discriminative or calibration power and there is a critical need to improve the selection process. We aimed to assess the value of various artificial intelligence (AI) algorithms to improve the risk stratification index. We evaluated pre-transplant variables among 66 914 live-donor kidney transplants (performed between 01/12/2007-01/06/2021) from the United Network of Organ Sharing database, randomized into training (80%) and test (20%) sets. The primary outcome measure was death-censored graft survival. We tested four machine learning models for discrimination (time-dependent concordance index, CTD, and area under the ROC curve) and calibration (integrated Brier score, IBS). We used decision curve analysis to assess the potential clinical utility. Among the models, the deep Cox mixture model showed the best discriminative performance (AUC = 0.70, 0.68, and 0.68 at 5, 10, and 13 years post-transplant, respectively). CTD reached 0.70, 0.67, and 0.66 at 5, 10, and 13 years post-transplant. The IBS score was 0.09, indicating good calibration. In comparison, applying the Living Kidney Donor Profile Index (LKDPI) on the same cohort produced a CTD of 0.56 and an AUC of 0.55-0.58 only. Decision curve analysis showed an additional net benefit compared to the LKDPI, 'Treat all' and 'Treat None' approaches. Our AI-based deep Cox mixture model, termed Live-Donor Kidney Transplant Outcome Prediction outperforms existing prediction models, including the LKDPI, with the potential to improve decisions for optimum live donor selection by ranking potential transplant pairs based on graft survival. This model could be adopted to improve the outcomes of paired exchange programs.

2.
ASAIO J ; 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38552178

In kidney transplantation, pairing recipients with the highest longevity with low-risk allografts to optimize graft-donor survival is a complex challenge. Current risk prediction models exhibit limited discriminative and calibration capabilities and have not been compared to modern decision-assisting tools. We aimed to develop a highly accurate risk-stratification index using artificial intelligence (AI) techniques. Using data from the UNOS database (156,749 deceased kidney transplants, 2007-2021), we randomly divided transplants into training (80%) and validation (20%) sets. The primary measure was death-censored graft survival. Four machine learning models were assessed for calibration (integrated Brier score [IBS]) and discrimination (time-dependent concordance [CTD] index), compared with existing models. We conducted decision curve analysis and external validation using UK Transplant data. The Deep Cox mixture model showed the best discriminative performance (area under the curve [AUC] = 0.66, 0.67, and 0.68 at 6, 9, and 12 years post-transplant), with CTD at 0.66. Calibration was adequate (IBS = 0.12), while the kidney donor profile index (KDPI) model had lower CTD (0.59) and AUC (0.60). AI-based D-TOP outperformed the KDPI in evaluating transplant pairs based on graft survival, potentially enhancing deceased donor selection. Advanced computing is poised to influence kidney allocation schemes.

3.
Front Immunol ; 15: 1360629, 2024.
Article En | MEDLINE | ID: mdl-38510243

Introduction: Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, is a particularly lethal disease that is often diagnosed late and is refractory to most forms of treatment. Tumour hypoxia is a key hallmark of PDAC and is purported to contribute to multiple facets of disease progression such as treatment resistance, increased invasiveness, metabolic reprogramming, and immunosuppression. Methods: We used the Buffa gene signature as a hypoxia score to profile transcriptomics datasets from PDAC cases. We performed cell-type deconvolution and gene expression profiling approaches to compare the immunological phenotypes of cases with low and high hypoxia scores. We further supported our findings by qPCR analyses in PDAC cell lines cultured in hypoxic conditions. Results: First, we demonstrated that this hypoxia score is associated with increased tumour grade and reduced survival suggesting that this score is correlated to disease progression. Subsequently, we compared the immune phenotypes of cases with high versus low hypoxia score expression (HypoxiaHI vs. HypoxiaLOW) to show that high hypoxia is associated with reduced levels of T cells, NK cells and dendritic cells (DC), including the crucial cDC1 subset. Concomitantly, immune-related gene expression profiling revealed that compared to HypoxiaLOW tumours, mRNA levels for multiple immunosuppressive molecules were notably elevated in HypoxiaHI cases. Using a Random Forest machine learning approach for variable selection, we identified LGALS3 (Galectin-3) as the top gene associated with high hypoxia status and confirmed its expression in hypoxic PDAC cell lines. Discussion: In summary, we demonstrated novel associations between hypoxia and multiple immunosuppressive mediators in PDAC, highlighting avenues for improving PDAC immunotherapy by targeting these immune molecules in combination with hypoxia-targeted drugs.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Tumor Microenvironment/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Disease Progression , Hypoxia/genetics
4.
Iran Biomed J ; 26(3): 202-8, 2022 05 01.
Article En | MEDLINE | ID: mdl-35598150

Background: Mesenchymal stem cells (MSCs) enhance tissue repair through paracrine effects following transplantation. The versican protein is one of the important factors contributing to this repair mechanism. Using MSC conditioned medium for cultivating monocytes may increase versican protein production and could be a good alternative for transplantation of MSCs. This study investigates the effect of culture medium conditioned by human MSCs on the expression of the versican gene in peripheral blood mononuclear cells (PBMCs) under hypoxia-mimetic and normoxic conditions. Methods: The conditioned media used were derived from either adipose tissue or from Wharton's jelly (WJ). Flow cytometry for surface markers (CD105, CD73, and CD90) was used to confirm MSCs. The PBMCs were isolated and cultured with the culture media of the MSC derived from either the adipose tissue or WJ. Desferrioxamine and cobalt chloride (200 and 300 µM final concentrations, respectively) were added to monocytes media to induce hypoxia-mimetic conditions. Western blotting was applied to detect HIF-1α protein and confirm hypoxia-mimetic conditions in PBMC. Versican gene expression was assessed in PBMC using RT-PCR. Western blotting showed that the expression of HIF-1α in PBMC increased significantly (p < 0.01). Results: RT-PCR results demonstrated that the expression of the versican and VEGF genes in PBMC increased significantly (p < 0.01) in hypoxia-mimetic conditions as compared to normoxia. Conclusion: Based on the findings in the present study, the secreted factors of MSCs can be replaced by direct use of MSCs to improve damaged tissues.


Adipose Tissue , Hypoxia , Mesenchymal Stem Cells , Versicans , Wharton Jelly , Cell Differentiation , Cells, Cultured , Culture Media, Conditioned/pharmacology , Gene Expression , Humans , Hypoxia/metabolism , Leukocytes, Mononuclear , Versicans/genetics , Versicans/metabolism , Wharton Jelly/metabolism
5.
J Clin Periodontol ; 49(7): 622-632, 2022 07.
Article En | MEDLINE | ID: mdl-35451104

AIM: To discover and validate differential protein biomarker expression in saliva and gingival crevicular fluid (GCF) to discriminate objectively between periodontal health and plaque-induced periodontal disease states. MATERIALS AND METHODS: One-hundred and ninety participants were recruited from two centres (Birmingham and Newcastle upon Tyne, UK) comprising healthy, gingivitis, periodontitis, and edentulous donors. Samples from the Birmingham cohort were analysed by quantitative mass spectrometry proteomics for biomarker discovery. Shortlisted candidate proteins were then verified by enzyme-linked immunosorbent assay in both cohorts. Leave-one-out cross validation logistic regression analysis was used to identify the best performing biomarker panels. RESULTS: Ninety-five proteins were identified in both GCF and saliva samples, and 15 candidate proteins were selected based upon differences discovered between the donor groups. The best performing panels to distinguish between: health or gingivitis and periodontitis contained matrix metalloproteinase-9 (MMP9), S100A8, alpha-1-acid glycoprotein (A1AGP), pyruvate kinase, and age (area under the curve [AUC] 0.970); health and gingivitis contained MMP9, S100A8, A1AGP, and pyruvate kinase, but not age (AUC 0.768); and mild to moderate and advanced periodontitis contained MMP9, S100A8, A1AGP, pyruvate kinase, and age (AUC 0.789). CONCLUSIONS: Biomarker panels containing four proteins with and without age as a further parameter can distinguish between periodontal health and disease states.


Chronic Periodontitis , Gingivitis , Biomarkers/analysis , Chronic Periodontitis/metabolism , Gingival Crevicular Fluid/chemistry , Gingivitis/diagnosis , Gingivitis/metabolism , Humans , Matrix Metalloproteinase 9/analysis , Pyruvate Kinase/analysis , Saliva/chemistry
6.
ACS Biomater Sci Eng ; 5(1): 283-293, 2019 Jan 14.
Article En | MEDLINE | ID: mdl-33405859

Bioactive phosphate glasses are of considerable interest for a range of soft and hard tissue engineering applications. The glasses are degradable and can release biologically important ions in a controlled manner. The glasses can also potentially be used as an antimicrobial delivery system. In the given study, novel cobalt-doped phosphate-based glasses, (P2O5)50(Na2O)20(CaO)30-x(CoO)x where 0 ≤ x (mol %) ≤ 10, were manufactured and characterized. As the cobalt oxide concentration increased, the rate of dissolution was observed to decrease. The antimicrobial potential of the glasses was studied using direct and indirect contact methods against both Escherichia coli (NCTC 10538) Staphylococcus aureus (ATCC 6538) and Candida albicans (ATCC 76615). The results showed strong, time dependent, and strain specific antimicrobial activity of the glasses against microorganisms when in direct contact. Antimicrobial activity (R) ≥ 2 was observed within 2 h against Escherichia coli, whereas a similar effect was achieved in 6 h against Staphylococcus aureus and Candida albicans. However, when in indirect contact, the dissolution products from the bioactive glasses failed to show an antimicrobial effect. Following direct exposure to the glasses for 7 days, osteoblast-like SAOS-2 cells showed a 5-fold increase in VEGF mRNA while THP-1 monocytic cells showed a 4-fold increase in VEGF mRNA expression when exposed to 10% CoO-doped glass compared with the cobalt free control glass. Endothelial cells stimulated with conditioned medium taken from cell cultures of THP-1 monocytes exposed to 10% CoO doped glass showed clear tubelike structure (blood vessel) formation after 4 h.

7.
ACS Biomater Sci Eng ; 4(3): 1103-1111, 2018 Mar 12.
Article En | MEDLINE | ID: mdl-33418794

The effect of systematic Zr additions on the corrosion behavior of Ti was studied in both acidic and reactive oxygen species (ROS) containing environments, including macrophage cell culture, simulating inflammation associated with metallic implants. Electrochemical measurements on commercially pure (CP) Ti, Zr, and TiZr alloys showed that increasing Zr additions progressively enhanced Ti passivity in both acidic (HCl) and oxidative (H2O2) environments. However, a Ti50Zr alloy was found with increased pitting susceptibility. Corrosion was also evaluated using mass-spectrometry to determine metal ion release following exposure of the alloys to THP-1 macrophage cell cultures, transformed into either their M1 (inflammatory states) or M2a (tissue repair states) phenotypes. The magnitude of ion release was reduced with increasing Zr contents, consistent with electrochemical observations. Nevertheless, optimized Zr content in Ti should balance both passivity and pitting resistance.

8.
PLoS One ; 10(6): e0125799, 2015.
Article En | MEDLINE | ID: mdl-26057378

Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM), and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold) by long term hypoxia (5 days) than by 1 day of hypoxia (48 fold). We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K), LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression.


Macrophages/cytology , Macrophages/metabolism , Up-Regulation/genetics , Versicans/genetics , Base Sequence , Cell Hypoxia/genetics , Cells, Cultured , Flow Cytometry , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunoblotting , Luciferases/metabolism , Molecular Sequence Data , Monocytes/cytology , Phosphatidylinositol 3-Kinases/metabolism , Promoter Regions, Genetic/genetics , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Versicans/metabolism , beta Catenin/metabolism
9.
J Biol Chem ; 289(36): 25241-9, 2014 Sep 05.
Article En | MEDLINE | ID: mdl-25012658

We have recently shown that RaaS (regulator of antimicrobial-assisted survival), encoded by Rv1219c in Mycobacterium tuberculosis and by bcg_1279c in Mycobacterium bovis bacillus Calmette-Guérin, plays an important role in mycobacterial survival in prolonged stationary phase and during murine infection. Here, we demonstrate that long chain acyl-CoA derivatives (oleoyl-CoA and, to lesser extent, palmitoyl-CoA) modulate RaaS binding to DNA and expression of the downstream genes that encode ATP-dependent efflux pumps. Moreover, exogenously added oleic acid influences RaaS-mediated mycobacterial improvement of survival and expression of the RaaS regulon. Our data suggest that long chain acyl-CoA derivatives serve as biological indicators of the bacterial metabolic state. Dysregulation of efflux pumps can be used to eliminate non-growing mycobacteria.


Acyl Coenzyme A/metabolism , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Mycobacterium/metabolism , Acyl Coenzyme A/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Binding Sites/genetics , DNA, Bacterial/genetics , Fluorescence Polarization , Gene Expression Regulation, Bacterial/drug effects , Microbial Viability/drug effects , Microbial Viability/genetics , Molecular Sequence Data , Molecular Structure , Mutation , Mycobacterium/genetics , Mycobacterium bovis/genetics , Mycobacterium bovis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Oleic Acid/pharmacology , Palmitoyl Coenzyme A/chemistry , Palmitoyl Coenzyme A/metabolism , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Transcriptome/drug effects , Transcriptome/genetics
10.
Antimicrob Agents Chemother ; 58(5): 2798-806, 2014 May.
Article En | MEDLINE | ID: mdl-24590482

Antimicrobials targeting cell wall biosynthesis are generally considered inactive against nonreplicating bacteria. Paradoxically, we found that under nonpermissive growth conditions, exposure of Mycobacterium bovis BCG bacilli to such antimicrobials enhanced their survival. We identified a transcriptional regulator, RaaS (for regulator of antimicrobial-assisted survival), encoded by bcg1279 (rv1219c) as being responsible for the observed phenomenon. Induction of this transcriptional regulator resulted in reduced expression of specific ATP-dependent efflux pumps and promoted long-term survival of mycobacteria, while its deletion accelerated bacterial death under nonpermissive growth conditions in vitro and during macrophage or mouse infection. These findings have implications for the design of antimicrobial drug combination therapies for persistent infectious diseases, such as tuberculosis.


Anti-Infective Agents/pharmacology , Mycobacterium bovis/drug effects , Mycobacterium tuberculosis/drug effects , Animals , Cell Line , Electrophoretic Mobility Shift Assay , Fluorescence Polarization , Humans , Mice , Mycobacterium bovis/metabolism , Mycobacterium tuberculosis/metabolism
11.
Iran J Basic Med Sci ; 17(11): 820-30, 2014 Nov.
Article En | MEDLINE | ID: mdl-25691922

Macrophages accumulate in poorly vascularised and hypoxic sites including solid tumours, wounds and sites of infection and inflammation where they can be exposed to low levels of oxygen for long periods. Up to date, different studies have shown that a number of transcription factors are activated by hypoxia which in turn activate a broad array of mitogenic, pro-invasive, pro-angiogenic, and pro-metastatic genes. On the other hand, macrophages respond to hypoxia by up-regulating several genes which are chief factors in angiogenesis and tumorigenesis. Therefore, in this review article we focus mainly on the role of macrophages during inflammation and discuss their response to hypoxia by regulating a diverse array of transcription factors. We also review the existing literatures on hypoxia and its cellular and molecular mechanism which mediates macrophages activation.

12.
Acta Med Iran ; 51(11): 740-50, 2013.
Article En | MEDLINE | ID: mdl-24390942

One of the main members of the large aggregating proteoglycans (PGs) family is versican which is able to bind to hyaluronate. Versican is a chondroitin sulfate proteoglycan and is a key ingredient of the extracellular matrix.  Due to its widespread expression in the body, versican is involved in cell adhesion, proliferation and migration. Induced expression of versican is often observed in tissues such as breast, brain, ovary, gastrointestinal tract, prostate, and melanoma. In addition, versican has important role in development. For example, versican conducts the embryonic cell migration which is essential in the formation of the heart and outlining the path for neural crest cell migration. Several studies in the past decade up to now have shown that versican produced by mononuclear cells has an important role in wound healing and blood vessel formation and suggested that it promotes tumorigenesis and angiogenesis. In this mini-review, we summarise and discuss the role of versican in healthy and pathological tissues and suggest the possible function of transcription factors and signalling pathway in regulation of versican.


Extracellular Matrix/metabolism , Versicans/metabolism , Base Sequence , Carbohydrate Conformation , DNA , Molecular Sequence Data , Protein Conformation , Versicans/chemistry , Versicans/physiology
13.
Immunobiology ; 216(7): 832-9, 2011 Jul.
Article En | MEDLINE | ID: mdl-21281980

This study tested the hypothesis that prolonged severe hypoxia during monocyte to macrophage differentiation results in macrophages with a pattern of gene expression and phenotype distinct from those maturing in normal oxygen levels. Macrophages accumulate in hypoxic and anoxic areas within pathological sites such as tumours, wounds, and arthritic joints, and have been proposed as vehicles for gene therapy delivery to such tissues. Several non-pathological tissues are also hypoxic. We therefore argue that differentiation from monocyte to macrophage in hypoxic conditions is a common occurrence. However, the effect of long term severe hypoxia on monocyte to macrophage differentiation has not been studied. Here, using primary human peripheral blood monocytes, we show that maturation for 5 days in 0.2% oxygen results in decreased phagocytosis, and decreased CD40 and CD206 expression. Chronic hypoxia induced much higher mRNA levels of the pro-angiogenic cytokine, VEGF, in adherence-purified macrophages (27-fold), CD14-magnetic bead purified monocytes (90-fold), and PBMC (104-fold) compared to acute (24h) hypoxia (11, 17 and 9-fold, respectively). This suggests that macrophages may play an even greater role in angiogenesis than previously appreciated. Furthermore, chronic hypoxia resulted in up-regulation of HIF-1α mRNA, in all monocyte-derived macrophage types studied. Actinomycin D experiments indicate that the increases in HIF-1α mRNA were not due to increased mRNA stability. To our knowledge this is the first study demonstrating up-regulation of HIF-1α mRNA by hypoxia in macrophages. Taken together, the data support the hypothesis that hypoxia affects monocyte to macrophage maturation, resulting in a distinct gene expression pattern and phenotype.


Cell Differentiation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/immunology , Macrophages/drug effects , Vascular Endothelial Growth Factor A/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Humans , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Oxygen/pharmacology , Phagocytosis/drug effects , RNA, Messenger/analysis , Up-Regulation , Vascular Endothelial Growth Factor A/genetics
14.
Cancer Res ; 71(5): 1805-15, 2011 Mar 01.
Article En | MEDLINE | ID: mdl-21233334

New therapies are required to target hypoxic areas of tumors as these sites are highly resistant to conventional cancer therapies. Monocytes continuously extravasate from the bloodstream into tumors where they differentiate into macrophages and accumulate in hypoxic areas, thereby opening up the possibility of using these cells as vehicles to deliver gene therapy to these otherwise inaccessible sites. We describe a new cell-based method that selectively targets an oncolytic adenovirus to hypoxic areas of prostate tumors. In this approach, macrophages were cotransduced with a hypoxia-regulated E1A/B construct and an E1A-dependent oncolytic adenovirus, whose proliferation is restricted to prostate tumor cells using prostate-specific promoter elements from the TARP, PSA, and PMSA genes. When such cotransduced cells reach an area of extreme hypoxia, the E1A/B proteins are expressed, thereby activating replication of the adenovirus. The virus is subsequently released by the host macrophage and infects neighboring tumor cells. Following systemic injection into mice bearing subcutaneous or orthotopic prostate tumors, cotransduced macrophages migrated into hypoxic tumor areas, upregulated E1A protein, and released multiple copies of adenovirus. The virus then infected neighboring cells but only proliferated and was cytotoxic in prostate tumor cells, resulting in the marked inhibition of tumor growth and reduction of pulmonary metastases. This novel delivery system employs 3 levels of tumor specificity: the natural "homing" of macrophages to hypoxic tumor areas, hypoxia-induced proliferation of the therapeutic adenovirus in host macrophages, and targeted replication of oncolytic virus in prostate tumor cells.


Adenoviridae/genetics , Macrophages/virology , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Prostatic Neoplasms/therapy , Adenovirus E1A Proteins/genetics , Animals , Cell Hypoxia/physiology , Electrophoresis, Polyacrylamide Gel , Humans , Male , Mice , Mice, Nude , Transduction, Genetic , Xenograft Model Antitumor Assays
15.
Immunol Lett ; 118(2): 142-7, 2008 Jun 30.
Article En | MEDLINE | ID: mdl-18468696

Monocyte heterogeneity has been studied extensively in man but only recently tools have been developed to study blood monocyte populations in the mouse. We have used the MacGreen mouse model, which expresses the green fluorescent protein under the control of the promoter of the murine M-CSF receptor (CSF1 receptor, c-fms). Since both monocytes and granulocytes show GFP expression in this model the latter cells were excluded by staining with the Ly6G granulocyte marker. GFP+ Ly6G- blood monocytes were found to account for an average of 246+/-121cells/microl in these mice. These monocytes can be subdivided into CD43+ GR-1+ cells and CD43++ GR-1(-) cells, with the latter cells accounting for 140+/-77cells/mul, i.e. about 60% of all blood monocytes. After intraperitoneal injection of lipopolysaccharide (LPS) both blood monocyte subpopulations were depleted. The same was true after intranasal infection with Streptococcus pneumoniae but here the CD43++ subpopulation was preferentially reduced to 4cells/mul. For the study of TNF expression cells were stimulated in vitro with LPS from Salmonella abortus equi in the presence of Brefeldin A followed by intracellular staining and multicolor flow cytometry. Over a dose range of 10-100ng LPS/ml, TNF protein production was significantly higher in the CD43++ monocyte subset. At 1000ng LPS/ml 90% of all CD43++ monocytes stained positive for TNF and in terms of fluorescence intensity TNF was 5-fold higher compared to the CD43+ monocytes. These data indicate that the murine CD43++ monocyte subset exhibits features of pro-inflammatory monocytes and is functionally homologeous to the human CD14+CD16+ monocytes.


Leukosialin/metabolism , Monocytes/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation , Animals , Leukosialin/genetics , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/immunology , Streptococcus pneumoniae/immunology
16.
Vaccine ; 24(6): 776-84, 2006 Feb 06.
Article En | MEDLINE | ID: mdl-16198029

Although DNA vaccines appear to be efficient at inducing strong cellular immune responses, a number of questions remain regarding their ability to induce humoral immunity. The essential components for generating an antibody response include B and T cell recognition of antigen, subsequent activation, clonal expansion of each lymphocyte type and migration of T cells into B cell follicles to provide help, all leading to germinal centre formation and antibody production. We have employed a double adoptive transfer system based on ovalbumin (OVA)-specific CD4+ DO11.10 T cells and hen egg lysozyme (HEL)-specific MD4 B cells to assess all of these parameters in the context of DNA vaccination in vivo. We find that vaccination with DNA constructs expressing an OVA-HEL gene fusion (encoding contiguous T and B cell epitopes) can induce T cell activation, clonal expansion and migration into B cell follicles accompanied by B cell activation, blastogenesis, expansion and antibody production. These findings show that DNA vaccination can induce all of the components required for humoral immunity and also provide a system for in depth analysis of factors that influence the development of antibody responses. Such strategies may facilitate the rational design of vaccines capable of inducing effective humoral immunity.


Antibody Formation , Vaccines, DNA/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Male , Mice , Mice, Inbred BALB C
17.
EMBO J ; 24(14): 2491-8, 2005 Jul 20.
Article En | MEDLINE | ID: mdl-15973432

The secreted Mycobacterium tuberculosis complex proteins CFP-10 and ESAT-6 have recently been shown to play an essential role in tuberculosis pathogenesis. We have determined the solution structure of the tight, 1:1 complex formed by CFP-10 and ESAT-6, and employed fluorescence microscopy to demonstrate specific binding of the complex to the surface of macrophage and monocyte cells. A striking feature of the complex is the long flexible arm formed by the C-terminus of CFP-10, which was found to be essential for binding to the surface of cells. The surface features of the CFP-10.ESAT-6 complex, together with observed binding to specific host cells, strongly suggest a key signalling role for the complex, in which binding to cell surface receptors leads to modulation of host cell behaviour to the advantage of the pathogen.


Antigens, Bacterial/chemistry , Bacterial Proteins/chemistry , Signal Transduction/physiology , Virulence Factors/chemistry , Amino Acid Sequence , Animals , Antigens, Bacterial/metabolism , Antigens, Bacterial/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/physiology , COS Cells , Cell Lineage , Cell Membrane/metabolism , Cells, Cultured , Chlorocebus aethiops , Humans , Mice , Molecular Sequence Data , Monocytes/metabolism , NIH 3T3 Cells , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship , U937 Cells , Virulence Factors/physiology
18.
Immunobiology ; 209(1-2): 51-6, 2004.
Article En | MEDLINE | ID: mdl-15481140

Matrix metalloproteinase 7 (MMP-7), or matrilysin, is a secreted protease expressed by glandular and mucosal epithelial cells, keratinocytes, fibroblasts and macrophages. As with other MMPs it can act on the extracellular matrix and thereby regulate cell migration and tissue repair. In addition, MMP-7 has an important role in the maintenance of innate immunity in organs such as the lungs and intestines where it proteolytically activates anti-bacterial peptides such as pro-defensins. MMP-7 is also important for mediating proteolytic release of TNF from macrophages. Consistent with its role in innate immunity, MMP-7 is induced by microbial products and also, unexpectedly, by hypoxia.


Immunity, Innate , Matrix Metalloproteinase 7/physiology , Gene Expression Regulation , Matrix Metalloproteinase 7/immunology , Matrix Metalloproteinase 7/metabolism , Transcription, Genetic
19.
Am J Pathol ; 163(4): 1233-43, 2003 Oct.
Article En | MEDLINE | ID: mdl-14507633

Macrophages accumulate in ischemic areas of such pathological tissues as solid tumors, atherosclerotic plaques and arthritic joints. Studies have suggested that hypoxia alters the phenotype of macrophages in a way that promotes these lesions. However, the genes up-regulated by macrophages in such hypoxic tissues are poorly characterized. Here, we have used cDNA array hybridization to investigate the effects of hypoxia on the mRNAs of 1185 genes in primary human monocyte-derived macrophages. As shown previously in other cell types, mRNA levels for vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT-1) were up-regulated by hypoxia. However, the mRNAs of other genes were also up-regulated including matrix metalloproteinase-7 (MMP-7), neuromedin B receptor, and the DNA-binding protein inhibitor, Id2. The promoters of GLUT-1 and MMP-7 confer hypoxic inducibility on a reporter gene in RAW 264.7 macrophages, indicating that the hypoxic up-regulation of these mRNAs may occur, at least in part, at the transcriptional level. GLUT-1 and MMP-7 mRNA were also shown to be up-regulated in hypoxic macrophages in vitro by real-time RT-PCR, and these proteins were elevated in hypoxic macrophages in vitro and in hypoxic areas of human breast tumors. The hypoxia up-regulated genes identified could be important for the survival and functioning of macrophages in hypoxic diseased tissues, and their promoters could prove useful in macrophage-delivered gene therapy.


Cell Hypoxia/genetics , Gene Expression , Macrophages/metabolism , Animals , Cells, Cultured , Computer Systems , Gene Expression Regulation , Genes, Reporter , Genetic Therapy , Glucose Transporter Type 1 , Humans , Immunologic Techniques , Ischemia/therapy , Macrophages/physiology , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/physiology , RNA, Messenger/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , Transfection , Up-Regulation
20.
Expert Opin Biol Ther ; 3(6): 919-24, 2003 Sep.
Article En | MEDLINE | ID: mdl-12943451

Macrophages accumulate in pathological sites, including tumours, atherosclerotic plaques, arthritic joints and sites of infection. This fact led to the concept of introducing ex vivo genetically modified macrophages into a patient, where they would then 'home' to the sites of disease. For this novel and powerful approach to become a reality, the difficulty of efficiently transfecting macrophages and the tendency of transferred macrophages to locate to non-target sites must be overcome. Great progress has been made in the transfection of macrophages using viral vectors, and in the use of stably transfected CD34(+) precursors of monocytes/macrophages, which could allow the bone marrow of patients with genetic disorders to be permanently enhanced with genetically modified cells. Lack of specificity in macrophage homing to diseased sites is proving to be a problem and will most likely need to be circumvented by the use of means such as disease- or site-specific transcriptional targeting to control expression of the therapeutic transgene.


Genetic Therapy/methods , Genetic Vectors , Macrophages/physiology , Animals , Humans , Transcriptional Activation/physiology , Transfection
...