Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1394263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904042

RESUMEN

Introduction: Caloric restriction (CR) is a nutritional intervention that increases life expectancy while lowering the risk for cardio-metabolic disease. Its effects on bone health, however, remain controversial. For instance, CR has been linked to increased accumulation of bone marrow adipose tissue (BMAT) in long bones, a process thought to elicit detrimental effects on bone. Qualitative differences have been reported in BMAT in relation to its specific anatomical localization, subdividing it into physiological and potentially pathological BMAT. We here examine the local impact of CR on bone composition, microstructure and its endocrine profile in the context of aging. Methods: Young and aged male C57Bl6J mice were subjected to CR for 8 weeks and were compared to age-matched littermates with free food access. We assessed bone microstructure and BMAT by micro-CT, bone fatty acid and transcriptomic profiles, and bone healing. Results: CR increased tibial BMAT accumulation and adipogenic gene expression. CR also resulted in elevated fatty acid desaturation in the proximal and mid-shaft regions of the tibia, thus more closely resembling the biochemical lipid profile of the distally located, physiological BMAT. In aged mice, CR attenuated trabecular bone loss, suggesting that CR may revert some aspects of age-related bone dysfunction. Cortical bone, however, was decreased in young mice on CR and remained reduced in aged mice, irrespective of dietary intervention. No negative effects of CR on bone regeneration were evident in either young or aged mice. Discussion: Our findings indicate that the timing of CR is critical and may exert detrimental effects on bone biology if administered during a phase of active skeletal growth. Conversely, CR exerts positive effects on trabecular bone structure in the context of aging, which occurs despite substantial accumulation of BMAT. These data suggest that the endocrine profile of BMAT, rather than its fatty acid composition, contributes to healthy bone maintenance in aged mice.


Asunto(s)
Adipocitos , Envejecimiento , Restricción Calórica , Hueso Esponjoso , Ratones Endogámicos C57BL , Animales , Masculino , Restricción Calórica/métodos , Ratones , Envejecimiento/fisiología , Hueso Esponjoso/patología , Adipocitos/metabolismo , Médula Ósea/metabolismo , Tibia/metabolismo
2.
Front Cell Dev Biol ; 11: 1104709, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895792

RESUMEN

Patients suffering from musculoskeletal diseases must cope with a diminished quality of life and an increased burden on medical expenses. The interaction of immune cells and mesenchymal stromal cells during bone regeneration is one of the key requirements for the restoration of skeletal integrity. While stromal cells of the osteo-chondral lineage support bone regeneration, an excessive accumulation of cells of the adipogenic lineage is thought to promote low-grade inflammation and impair bone regeneration. Increasing evidence indicates that pro-inflammatory signaling from adipocytes is responsible for various chronic musculoskeletal diseases. This review aims to summarize the features of bone marrow adipocytes by phenotype, function, secretory features, metabolic properties and their impact on bone formation. In detail, the master regulator of adipogenesis and prominent diabetes drug target, peroxisome proliferator-activated receptor γ (PPARG), will be debated as a potential therapeutic approach to enhance bone regeneration. We will explore the possibilities of using clinically established PPARG agonists, the thiazolidinediones (TZDs), as a treatment strategy to guide the induction of a pro-regenerative, metabolically active bone marrow adipose tissue. The impact of this PPARG induced bone marrow adipose tissue type on providing the necessary metabolites to sustain osteogenic-as well as beneficial immune cells during bone fracture healing will be highlighted.

3.
Exp Mol Med ; 54(8): 1262-1276, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36028760

RESUMEN

With increasing age, the risk of bone fractures increases while regenerative capacity decreases. This variation in healing potential appears to be linked to adaptive immunity, but the underlying mechanism is still unknown. This study sheds light on immunoaging/inflammaging, which impacts regenerative processes in aging individuals. In an aged preclinical model system, different levels of immunoaging were analyzed to identify key factors that connect immunoaged/inflammaged conditions with bone formation after long bone fracture. Immunological facets, progenitor cells, the microbiome, and confounders were monitored locally at the injury site and systemically in relation to healing outcomes in 12-month-old mice with distinct individual levels of immunoaging. Bone tissue formation during healing was delayed in the immunoaged group and could be associated with significant changes in cytokine levels. A prolonged and amplified pro-inflammatory reaction was caused by upregulated immune cell activation markers, increased chemokine receptor availability and a lack of inhibitory signaling. In immunoaged mice, interleukin-22 was identified as a core cell signaling protein that played a central role in delayed healing. Therapeutic neutralization of IL-22 reversed this specific immunoaging-related disturbed healing. Immunoaging was found to be an influencing factor of decreased regenerative capacity in aged individuals. Furthermore, a novel therapeutic strategy of neutralizing IL-22 may successfully rejuvenate healing in individuals with advanced immune experiences.


Asunto(s)
Curación de Fractura , Interleucinas , Animales , Citocinas/metabolismo , Curación de Fractura/inmunología , Interleucinas/inmunología , Interleucinas/metabolismo , Ratones , Osteogénesis , Interleucina-22
4.
Microb Cell Fact ; 18(1): 114, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253141

RESUMEN

BACKGROUND: Actinoplanes sp. SE50/110 is a natural producer of acarbose. It has been extensively studied in the last decades, which has led to the comprehensive analysis of the whole genome, transcriptome and proteome. First genetic and microbial techniques have been successfully established allowing targeted genome editing by CRISPR/Cas9 and conjugal transfer. Still, a suitable system for the overexpression of singular genes does not exist for Actinoplanes sp. SE50/110. Here, we discuss, test and analyze different strategies by the example of the acarbose biosynthesis gene acbC. RESULTS: The integrative φC31-based vector pSET152 was chosen for the development of an expression system, as for the replicative pSG5-based vector pKC1139 unwanted vector integration by homologous recombination was observed. Since simple gene duplication by pSET152 integration under control of native promoters appeared to be insufficient for overexpression, a promoter screening experiment was carried out. We analyzed promoter strengths of five native and seven heterologous promoters using transcriptional fusion with the gusA gene and glucuronidase assays as well as reverse transcription quantitative PCR (RT-qPCR). Additionally, we mapped transcription starts and identified the promoter sequence motifs by 5'-RNAseq experiments. Promoters with medium to strong expression were included into the pSET152-system, leading to an overexpression of the acbC gene. AcbC catalyzes the first step of acarbose biosynthesis and connects primary to secondary metabolism. By overexpression, the acarbose formation was not enhanced, but slightly reduced in case of strongest overexpression. We assume either disturbance of substrate channeling or a negative feed-back inhibition by one of the intermediates, which accumulates in the acbC-overexpression mutant. According to LC-MS-analysis, we conclude, that this intermediate is valienol-7P. This points to a bottleneck in later steps of acarbose biosynthesis. CONCLUSION: Development of an overexpression system for Actinoplanes sp. SE50/110 is an important step for future metabolic engineering. This system will help altering transcript amounts of singular genes, that can be used to unclench metabolic bottlenecks and to redirect metabolic resources. Furthermore, an essential tool is provided, that can be transferred to other subspecies of Actinoplanes and industrially relevant derivatives.


Asunto(s)
Acarbosa/metabolismo , Proteínas Bacterianas/genética , Técnicas Genéticas , Vectores Genéticos/genética , Micromonosporaceae/genética , Micromonosporaceae/metabolismo , Proteínas Bacterianas/metabolismo , Edición Génica , Vectores Genéticos/metabolismo , Genoma Bacteriano , Proteoma , Transcriptoma
5.
Nat Med ; 25(2): 242-248, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30374197

RESUMEN

The discovery of the highly efficient site-specific nuclease system CRISPR-Cas9 from Streptococcus pyogenes has galvanized the field of gene therapy1,2. The immunogenicity of Cas9 nuclease has been demonstrated in mice3,4. Preexisting immunity against therapeutic gene vectors or their cargo can decrease the efficacy of a potentially curative treatment and may pose significant safety issues3-6. S. pyogenes is a common cause for infectious diseases in humans, but it remains unclear whether it induces a T cell memory against the Cas9 nuclease7,8. Here, we show the presence of a preexisting ubiquitous effector T cell response directed toward the most widely used Cas9 homolog from S. pyogenes (SpCas9) within healthy humans. We characterize SpCas9-reactive T cells within the CD4/CD8 compartments for multi-effector potency, cytotoxicity, and lineage determination. In-depth analysis of SpCas9-reactive T cells reveals a high frequency of SpCas9-reactive regulatory T cells that can mitigate SpCas9-reactive effector T cell proliferation and function in vitro. Our results shed light on T cell-mediated immunity toward CRISPR-associated nucleases and offer a possible solution to overcome the problem of preexisting immunity.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Streptococcus pyogenes/metabolismo , Linfocitos T/inmunología , Adolescente , Adulto , Femenino , Humanos , Interferón gamma/metabolismo , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...