Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Xenotransplantation ; 31(3): e12872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38924560

RESUMEN

Attack of donor tissues by pre-formed anti-pig antibodies is well known to cause graft failure in xenotransplantation. Genetic engineering of porcine donors to eliminate targets of these pre-formed antibodies coupled with advances in immunosuppressive medicines have now made it possible to achieve extended survival in the pre-clinical pig-to-non-human primate model. Despite these improvements, antibodies remain a risk over the lifetime of the transplant, and many patients continue to have pre-formed donor-specific antibodies even to highly engineered pigs. While therapeutics exist that can help mitigate the detrimental effects of antibodies, they act broadly potentially dampening beneficial immunity. Identifying additional xenoantigens may enable more targeted approaches, such as gene editing, to overcome these challenges by further eliminating antibody targets on donor tissue. Because we have found that classical class I swine leukocyte antigens are targets of human antibodies, we now examine whether related pig proteins may also be targeted by human antibodies. We show here that non-classical class I swine leukocyte proteins (SLA-6, -7, -8) can be expressed at the surface of mammalian cells and act as antibody targets.


Asunto(s)
Antígenos Heterófilos , Antígenos de Histocompatibilidad Clase I , Trasplante Heterólogo , Animales , Porcinos , Trasplante Heterólogo/métodos , Antígenos Heterófilos/inmunología , Humanos , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Rechazo de Injerto/inmunología , Animales Modificados Genéticamente
2.
Xenotransplantation ; 30(6): e12834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37971870

RESUMEN

Pig liver xenotransplantation is limited by a thrombocytopenic coagulopathy that occurs immediately following graft reperfusion. In vitro and ex vivo studies from our lab suggested that the thrombocytopenia may be the result of a species incompatibility in platelet glycosylation. Realization that platelet α-granules contain antibodies caused us to reevaluate whether the thrombocytopenia in liver xenotransplantation could occur because IgM and IgG from inside platelet α-granules bound to pig liver sinusoidal endothelial cells (LSECs). Our in vitro analysis of IgM and IgG from inside α-granules showed that platelets do carry xenoreactive antibodies that can bind to known xenoantigens. This study suggests that thrombocytopenia occurring following liver xenotransplantation could occur because of xenoreactive antibodies tethering human platelets to the pig LSEC enabling the platelet to be phagocytosed. These results suggest genetic engineering strategies aimed at reducing xenoantigens on the surface of pig LSEC will be effective in eliminating the thrombocytopenia that limits survival in liver xenotransplantation.


Asunto(s)
Células Endoteliales , Trombocitopenia , Porcinos , Animales , Humanos , Trasplante Heterólogo/métodos , Hígado , Plaquetas , Trombocitopenia/etiología , Antígenos Heterófilos , Inmunoglobulina G , Inmunoglobulina M
3.
Immunohorizons ; 7(9): 619-625, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712913

RESUMEN

Organ supply remains inadequate to meet the needs of many patients who could benefit from allotransplantation. Xenotransplantation, the use of animals as organ donors, provides an opportunity to alleviate this challenge. Pigs are widely accepted as the ideal organ donor, but humans and nonhuman primates have strong humoral immune responses to porcine tissue. Although carbohydrate xenoantigens have been studied intensively, the primate Ab response also targets class I and class II swine leukocyte Ags (SLAs). Human Abs that recognize HLAs can cross-react with SLA molecules because epitopes can be shared across species. However, ∼15% of people may also exhibit Abs toward class II SLAs despite lacking Abs that also recognize class II HLAs. Here, we extend these studies to better understand human Ab responses toward class I SLAs. When tested against a panel of 18 unique class I SLA proteins, 14 of 52 sera samples collected from patients in need of an organ transplant contained Abs that bound class I SLAs. Class I SLA-reactive sera may contain IgM only, IgG, only, or IgM and IgG capable of recognizing the pig proteins. The presence of class I HLA-reactive Abs was not essential to generating anti-class I SLA Ig. Last, anti-class I SLA reactivity varied by serum; some recognized a single SLA allele, whereas others recognized multiple class I SLA proteins.


Asunto(s)
Leucocitos , Listas de Espera , Humanos , Animales , Porcinos , Inmunoglobulina G , Inmunoglobulina M
4.
Exp Clin Transplant ; 21(5): 387-396, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37334686

RESUMEN

Genetically engineered pigs with multiple gene deletions and insertions are predicted to extend porcine to human xenograft survival. Several genes have been successfully knocked out and inserted, yet more have failed to produce viable animals for unexplained reasons. The effects of gene editing on cellular homeostasis may be the cause of reduced embryo fitness, failed pregnancies, or poor piglet viability. The elements of cellular dysfunction such as endoplasmic reticulum stress and oxidative stress induced by gene editing may additively affect the quality of genetically engineered cells to be used for cloning. Evaluating the impact of each gene edit on cellular fitness for cloning will allow researchers to maintain the cellular homeostasis of engineered cells that were validated as candidates for cloning and the production of porcine organ donors.


Asunto(s)
Estrés del Retículo Endoplásmico , Estrés Oxidativo , Animales , Humanos , Porcinos , Trasplante Heterólogo , Animales Modificados Genéticamente , Homeostasis
5.
Am J Transplant ; 22(3): 745-760, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34704345

RESUMEN

A safe, efficacious, and clinically applicable immunosuppressive regimen is necessary for islet xenotransplantation to become a viable treatment option for diabetes. We performed intraportal transplants of wild-type adult porcine islets in 25 streptozotocin-diabetic cynomolgus monkeys. Islet engraftment was good in 21, partial in 3, and poor in 1 recipient. Median xenograft survival was 25 days with rapamycin and CTLA4Ig immunosuppression. Adding basiliximab induction and maintenance tacrolimus to the base regimen significantly extended median graft survival to 147 days (p < .0001), with three animals maintaining insulin-free xenograft survival for 265, 282, and 288 days. We demonstrate that this regimen suppresses non-Gal anti-pig antibody responses, circulating effector memory T cell expansion, effector function, and infiltration of the graft. However, a chronic systemic inflammatory state manifested in the majority of recipients with long-term graft survival indicated by increased neutrophil to lymphocyte ratio, IL-6, MCP-1, CD40, and CRP expression. This suggests that this immunosuppression regimen fails to regulate innate immunity and resulting inflammation is significantly associated with increased incidence and severity of adverse events making this regimen unacceptable for translation. Additional studies are needed to optimize a maintenance regimen for regulating the innate inflammatory response.


Asunto(s)
Diabetes Mellitus , Trasplante de Islotes Pancreáticos , Animales , Rechazo de Injerto/etiología , Supervivencia de Injerto , Xenoinjertos , Humanos , Terapia de Inmunosupresión , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Inflamación/etiología , Trasplante de Islotes Pancreáticos/métodos , Macaca fascicularis , Porcinos , Trasplante Heterólogo/métodos
7.
Front Immunol ; 12: 730545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566993

RESUMEN

The human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1-/HLAG1+ pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system. GTKO/HLAG1+ pigs showing immune inhibitory functions were generated through somatic cell nuclear transfer (SCNT). The presence of HLA-G1 at the ROSA26 locus and the deletion of GGTA1 were confirmed by next generation sequencing (NGS) and Sanger's sequencing. Fibroblasts from piglets, biopsies from transplantable organs, and islets were positive for HLA-G1 expression by confocal microscopy, flow cytometry, or q-PCR. The expression of cell surface HLA-G1 molecule associated with endogenous ß2-microglobulin (ß2m) was confirmed by staining genetically engineered cells with fluorescently labeled recombinant ILT2 protein. Fibroblasts obtained from GTKO/HLAG1+ pigs were shown to modulate the immune response by lowering IFN-γ production by T cells and proliferation of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells, as well as by augmenting phosphorylation of Src homology region 2 domain-containing phosphatase-2 (SHP-2), which plays a central role in immune suppression. Islets isolated from GTKO/HLA-G1+ genetically engineered pigs and transplanted into streptozotocin-diabetic nude mice restored normoglycemia, suggesting that the expression of HLA-G1 did not interfere with their ability to reverse diabetes. The findings presented here suggest that the HLA-G1+ transgene can be stably expressed from the ROSA26 locus of non-fetal maternal tissue at the cell surface. By providing an immunomodulatory signal, expression of HLA-G1+ may extend survival of porcine pancreatic islet and organ xenografts.


Asunto(s)
Fibroblastos/metabolismo , Galactosiltransferasas/deficiencia , Antígenos HLA-G/metabolismo , Células Asesinas Naturales/metabolismo , Linfocitos T/metabolismo , Animales , Animales Modificados Genéticamente , Linfocitos B/inmunología , Linfocitos B/metabolismo , Glucemia/inmunología , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Fibroblastos/inmunología , Galactosiltransferasas/genética , Genotipo , Antígenos HLA-G/inmunología , Haplorrinos , Humanos , Interferón gamma/metabolismo , Trasplante de Islotes Pancreáticos , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Desnudos , Fenotipo , Sus scrofa , Linfocitos T/inmunología , Donantes de Tejidos , Trasplante Heterólogo
8.
Ann Surg ; 274(3): 473-480, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34238812

RESUMEN

OBJECTIVE: Pig-to-primate renal xenotransplantation is plagued by early antibody-mediated graft loss which precludes clinical application of renal xenotransplantation. We evaluated whether temporary complement inhibition with anti-C5 antibody Tesidolumab could minimize the impact of early antibody-mediated rejection in rhesus monkeys receiving pig kidneys receiving costimulatory blockade-based immunosuppression. METHODS: Double (Gal and Sda) and triple xenoantigen (Gal, Sda, and SLA I) pigs were created using CRISPR/Cas. Kidneys from DKO and TKO pigs were transplanted into rhesus monkeys that had the least reactive crossmatches. Recipients received anti-C5 antibody weekly for 70 days, and T cell depletion, anti-CD154, mycophenolic acid, and steroids as baseline immunosuppression (n = 7). Control recipients did not receive anti-C5 therapy (n = 10). RESULTS: Temporary anti-C5 therapy reduced early graft loss secondary to antibody-mediated rejection and improved graft survival (P < 0.01). Deleting class I MHC (SLA I) in donor pigs did not ameliorate early antibody-mediated rejection (table). Anti-C5 therapy did not allow for the use of tacrolimus instead of anti-CD154 (table), prolonging survival to a maximum of 62 days. CONCLUSION: Inhibition of the C5 complement subunit prolongs renal xenotransplant survival in a pig to non-human primate model.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales/farmacología , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Inmunosupresores/farmacología , Trasplante de Riñón , Trasplante Heterólogo , Animales , Animales Modificados Genéticamente , Profilaxis Antibiótica , Tolerancia Inmunológica , Macaca mulatta , Modelos Animales , Rituximab/farmacología , Porcinos , Tacrolimus/farmacología
9.
PLoS One ; 16(6): e0253029, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34138941

RESUMEN

Understanding the anti-carbohydrate antibody response toward epitopes expressed on porcine cells, tissues, and organs is critical to advancing xenotransplantation toward clinical application. In this study, we determined IgM and IgG antibody specificities and relative concentrations in five cynomolgus monkeys at baseline and at intervals following intraportal xenotransplantation of adult porcine islets. This study utilized a carbohydrate antigen microarray that comprised more than 400 glycoconjugates, including historically reported α-Gal and non-α-Gal carbohydrate antigens with various modifications. The elicited anti-carbohydrate antibody responses were predominantly IgM compared to IgG in 4 out of 5 monkeys. Patterns of elicited antibody responses greater than 1.5 difference (log2 base units; 2.8-fold on a linear scale) from pre-serum to post-serum sampling specific for carbohydrate antigens were heterogeneous and recipient-specific. Increases in the elicited antibody response to α-Gal, Sda, GM2 antigens, or Lexis X antigen were found in individual monkeys. The novel carbohydrate structures Galß1-4GlcNAcß1-3Galß1 and N-linked glycans with Manα1-6(GlcNAcß1-2Manα1-3)Manß1-4GlcNAcß structure were common targets of elicited IgM antibodies. These results provide important insights into the carbohydrate epitopes that elicit antibodies following pig-to-monkey islet xenotransplantation and reveal possible targets for gene editing.


Asunto(s)
Carbohidratos/análisis , Rechazo de Injerto/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Trasplante de Islotes Pancreáticos/inmunología , Animales , Secuencia de Carbohidratos , Carbohidratos/genética , Carbohidratos/inmunología , Rechazo de Injerto/sangre , Macaca fascicularis , Masculino , Análisis por Micromatrices , Porcinos , Trasplante Heterólogo
10.
Surg Open Sci ; 4: 26-31, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33937740

RESUMEN

BACKGROUND: Genetically engineered porcine donors are a potential solution for the shortage of human organs for transplantation. Incompatibilities between humans and porcine donors are largely due to carbohydrate xenoantigens on the surface of porcine cells, provoking an immune response which leads to xenograft rejection. MATERIALS AND METHODS: Multiplex genetic knockout of GGTA1, ß4GalNT2, and CMAH is predicted to increase the rate of xenograft survival, as described previously for GGTA1. In this study, the clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 system was used to target genes relevant to xenotransplantation, and a method for highly efficient editing of multiple genes in primary porcine fibroblasts was described. RESULTS: Editing efficiencies greater than 85% were achieved for knockout of GGTA1, ß4GalNT2, and CMAH. CONCLUSION: The high-efficiency protocol presented here reduces scale and cost while accelerating the production of genetically engineered primary porcine fibroblast cells for in vitro studies and the production of animal models.

14.
Xenotransplantation ; 28(1): e12641, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32892439

RESUMEN

INTRODUCTION: Macrophages contribute to xenograft rejection by direct cytotoxicity and by amplifying T cell-mediated immune responses. It has been shown that transgenic expression of hCD47 protects porcine cells from human macrophages by restoring the CD47-SIRPα self-recognition signal. It has also been reported that the long 3' untranslated region (3'UTR) of the hCD47 gene, which is missing from constructs previously used to make hCD47 transgenic pigs, is critical for efficient cell surface expression in human cells. The aim of this study was to investigate the impact of a modified form of the 3'UTR on the expression, localization, and function of hCD47 in transfected porcine cells. METHODS: hCD47 constructs with and without the modified 3'UTR were knocked into the GGTA1 locus in porcine fetal fibroblasts using CRISPR. Flow cytometry of the transfected cells was used to analyze hCD47 localization. Endoplasmic reticulum (ER), mitochondrial, and oxidative stress were examined by gene expression analysis and confocal microscopy. Phagocytosis of transfected cells by human macrophages was measured by flow cytometry, and stimulation of human/non-human (NHP) primate lymphocytes by the cells was examined using a PBMCs proliferation assay. RESULTS: Cells transfected with the construct lacking the 3'UTR (hCD47(3'UTR-)) exhibited predominantly intracellular expression of hCD47, and showed evidence of ER stress, dysregulated mitochondrial biogenesis, oxidative stress, and autophagy. Inclusion of the 3'UTR (hCD47(3'UTR+)) decreased intracellular expression of hCD47 by 36% and increased cell surface expression by 53%. This was associated with a significant reduction in cellular stress markers and a higher level of protection from phagocytosis by human macrophages. Furthermore, hCD47(3'UTR+) porcine cells stimulated significantly less proliferation of human/NHP T cells than hCD47(3'UTR-) cells. CONCLUSION: Our results suggest the potential benefits of using hCD47 constructs containing the 3'UTR to generate genetically engineered hCD47-expressing donor pigs.


Asunto(s)
Antígeno CD47/genética , Estrés del Retículo Endoplásmico , Fibroblastos , Fagocitosis , Regiones no Traducidas 3' , Animales , Animales Modificados Genéticamente , Humanos , Porcinos , Trasplante Heterólogo
15.
PLoS One ; 15(11): e0241249, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33170858

RESUMEN

OBJECTIVES: Islet transplantation is an emerging treatment option for type 1 diabetes but its application is limited by the shortage of human pancreas donors. Characterization of the N- and O-glycan surface antigens that vary between human and genetically engineered porcine islet donors could shed light on targets of antibody mediated rejection. METHODS: N- and O-glycans were isolated from human and adult porcine islets and analyzed using matrix-assisted laser-desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and electrospray ionization mass spectrometry (ESI-MS/MS). RESULTS: A total of 57 porcine and 34 human N-glycans and 21 porcine and 14 human O-glycans were detected from cultured islets. Twenty-eight of which were detected only from porcine islets, which include novel xenoantigens such as high-mannose type N-glycans with core fucosylation and complex-type N-glycans with terminal neuraminic acid residues. Porcine islets have terminal N-glycolylneuraminic acid (NeuGc) residue in bi-antennary N-glycans and sialyl-Tn O-glycans. No galactose-α-1,3-galactose (α-Gal) or Sda epitope were detected on any of the islets. CONCLUSIONS: These results provide important insights into the potential antigenic differences of N- and O-glycan profiles between human and porcine islets. Glycan differences may identify novel gene targets for genetic engineering to generate superior porcine islet donors.


Asunto(s)
Fucosa/metabolismo , Islotes Pancreáticos/metabolismo , Manosa/metabolismo , Ácidos Neuramínicos/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Adulto , Animales , Vías Biosintéticas , Femenino , Glicosilación , Humanos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Porcinos
18.
Xenotransplantation ; 27(6): e12629, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32697003

RESUMEN

Progress has been made in overcoming antibody-mediated rejection of porcine xenografts by deleting pig genes that produce unique carbohydrate epitopes. Pigs deficient in galactose α-1,3 galactose (gene modified: GGTA1) and neu5Gc (gene modified: CMAH) have reduced levels of human antibody binding. Previously we identified α-fucose as a glycan that was expressed in high levels on cells of GGTA1/CMAH KO pigs. To validate the α-fucose phenotype observed previously we compared lectin affinity toward human and pig serum glycoproteins by dot blot analysis and confocal microscopy. Human anti-fucose antibody isolated by affinity chromatography was tested for specificity to L-fucose by custom macroarray. The affinity and cytotoxicity of the isolated human anti-fucose antibody toward human and GGTA1/CMAH KO pig PBMCs was determined by flow cytometry. Dot blot and confocal analysis support out previous findings that α-fucose is more highly expressed in pigs than humans. Pig kidney glomeruli and tubules contain abundant α-fucose and may represent focal sites for anti-α-fucose antibody binding. The Isolated human anti-fucose IgA, IgG and IgM bound to GGTA1/CMAH KO pig PBMC and were cytotoxic. Interestingly, the isolated human IgG cross reacted with the methyl pentose, L-rhamnose. Human anti-fucose antibody bound and was cytotoxic to GGTA1/CMAH KO pig peripheral blood monocytes. We have shown that α-fucose is an abundant target for cytotoxic human antibody in the organs of genetically modified pigs important to xenotransplantation.


Asunto(s)
Animales Modificados Genéticamente , Antígenos Heterófilos/inmunología , Fucosa , Trasplante Heterólogo , Animales , Fucosa/inmunología , Galactosiltransferasas , Técnicas de Inactivación de Genes , Humanos , Leucocitos Mononucleares , Oxigenasas de Función Mixta , Porcinos
19.
HLA ; 96(2): 197-201, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32452158

RESUMEN

Pigs are especially useful large animal models, however, limited availability of commercially available antibodies for immunoblotting presents a significant obstacle facing preclinical xenotransplantation research. Major histocompatibility complex class I (MHC-I) molecule expression enhancement by nucleotide-binding oligomerization domain (NOD)-like receptor family with a caspase recruitment domain (CARD) containing caspase 5 (NLRC5) is fundamental to understanding porcine xenoantigen presentation. Swine Leukocyte Antigens (SLAs) are the porcine MHC homologs for human leukocyte antigens. SLA-I is a known xenoantigen that causes T cell activation. NLRC5, SLA-I, and B2M are all targets of immune modulation in genetically engineered pigs in xenotransplantation research with the goal to reduce SLA-I expression. In the present study, the human anti-NLRC5 (ab105411), anti-NLRC5 (ab117624), anti-NLRC5 N-terminal (ab178767), anti-HLA E (ab203082), anti-HLA E (ab135826), anti-HLA E (ab2216) and anti-ß2 M (ab75853) antibodies were examined using immunoblots for porcine cross-reactivity. The anti-human antibodies ab117624, ab105411, ab178767, ab2216, and ab75853 cross reacted with cognate proteins in porcine cell lysates. Antibody reagents from this study will allow for validation of NLRC5, B2M, MHC-I expression in future research studies. In addition, following the methodology described in this study for other xenotransplantation targets may provide an alternative to custom antibody development.


Asunto(s)
Antígenos HLA , Antígenos de Histocompatibilidad Clase I , Alelos , Animales , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Activación de Linfocitos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...