Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(5): 103609, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547541

RESUMEN

Vaccination is one of the most effective strategies for preventing infectious diseases but individual vaccine responses are highly heterogeneous. Host genetics and gut microbiota composition are 2 likely drivers of this heterogeneity. We studied 94 animals belonging to 4 lines of laying hens: a White Leghorn experimental line genetically selected for a high antibody response against the Newcastle Disease Virus (NDV) vaccine (ND3) and its unselected control line (CTR), and 2 commercial lines (White Leghorn [LEG] and Rhode Island Red [RIR]). Animals were reared in the same conditions from hatching to 42 d of age, and animals from different genetic lines were mixed. Animals were vaccinated at 22 d of age and their humoral vaccine response against NDV was assessed by hemagglutination inhibition assay and ELISA from blood samples collected at 15, 19, and 21 d after vaccination. The immune parameters studied were the 3 immunoglobulins subtypes A, M, and Y and the blood cell composition was assessed by flow cytometry. The composition of the cecal microbiota was assessed at the end of the experiment by analyzing amplified 16S rRNA gene sequences to obtain amplicon sequence variants (ASV). The 4 lines showed significantly different levels of NDV vaccine response at the 3 measured points, with, logically, a higher response of the genetically selected ND3 line, and intermediate and low responses for the unselected CTR control line and for the 2 commercial lines, respectively. The ND3 line displayed also a higher proportion of immunoglobulins (IgA, IgM, and IgY). The RIR line showed the most different blood cell composition. The 4 lines showed significantly different microbiota characteristics: composition, abundances at all taxonomic levels, and correlations between genera and vaccine response. The tested genetic lines differ for immune parameters and gut microbiota composition and functions. These phenotypic differences can be attributed to genetic differences between lines. Causal relationships between both types of parameters are discussed and will be investigated in further studies.


Asunto(s)
Ciego , Pollos , Microbioma Gastrointestinal , Virus de la Enfermedad de Newcastle , Vacunas Virales , Animales , Pollos/inmunología , Pollos/genética , Pollos/microbiología , Femenino , Virus de la Enfermedad de Newcastle/inmunología , Vacunas Virales/inmunología , Ciego/microbiología , Ciego/inmunología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/inmunología , Enfermedad de Newcastle/inmunología , Vacunación/veterinaria , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética
2.
BMC Genomics ; 24(1): 271, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208589

RESUMEN

BACKGROUND: To reduce the cost of genomic selection, a low-density (LD) single nucleotide polymorphism (SNP) chip can be used in combination with imputation for genotyping selection candidates instead of using a high-density (HD) SNP chip. Next-generation sequencing (NGS) techniques have been increasingly used in livestock species but remain expensive for routine use for genomic selection. An alternative and cost-efficient solution is to use restriction site-associated DNA sequencing (RADseq) techniques to sequence only a fraction of the genome using restriction enzymes. From this perspective, use of RADseq techniques followed by an imputation step on HD chip as alternatives to LD chips for genomic selection was studied in a pure layer line. RESULTS: Genome reduction and sequencing fragments were identified on reference genome using four restriction enzymes (EcoRI, TaqI, AvaII and PstI) and a double-digest RADseq (ddRADseq) method (TaqI-PstI). The SNPs contained in these fragments were detected from the 20X sequence data of the individuals in our population. Imputation accuracy on HD chip with these genotypes was assessed as the mean correlation between true and imputed genotypes. Several production traits were evaluated using single-step GBLUP methodology. The impact of imputation errors on the ranking of the selection candidates was assessed by comparing a genomic evaluation based on ancestry using true HD or imputed HD genotyping. The relative accuracy of genomic estimated breeding values (GEBVs) was investigated by considering the GEBVs estimated on offspring as a reference. With AvaII or PstI and ddRADseq with TaqI and PstI, more than 10 K SNPs were detected in common with the HD SNP chip, resulting in an imputation accuracy greater than 0.97. The impact of imputation errors on genomic evaluation of the breeders was reduced, with a Spearman correlation greater than 0.99. Finally, the relative accuracy of GEBVs was equivalent. CONCLUSIONS: RADseq approaches can be interesting alternatives to low-density SNP chips for genomic selection. With more than 10 K SNPs in common with the SNPs of the HD SNP chip, good imputation and genomic evaluation results can be obtained. However, with real data, heterogeneity between individuals with missing data must be considered.


Asunto(s)
Pollos , Polimorfismo de Nucleótido Simple , Animales , Pollos/genética , Genoma , Genómica/métodos , Genotipo , Análisis de Secuencia de ADN
3.
Genet Sel Evol ; 55(1): 8, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698091

RESUMEN

BACKGROUND: Floor eggs, which are defined as eggs that hens lay off-nest, are a major issue in cage-free layer poultry systems. They create additional work for farmers because they must be collected by hand. They are also usually soiled or broken, which results in economic losses. Nonetheless, knowledge about the genetics of nesting behavior is limited. The aim of this study was to estimate genetic parameters for traits related to nest preference for laying and to time spent in the nests used for laying (laying duration). METHODS: Two pure lines of laying hens were studied: 927 Rhode Island Red and 980 White Leghorn. Electronic nests were used to record the nesting behavior of these hens in floor pens from 24 to 64 weeks of age. Nest preference was studied based on the mean distance between nests used for laying and the percentage of nests used for laying. Laying duration was studied based on mean laying duration, mean duration in the nest before laying, and mean duration in the nest after laying. Genetic parameters were estimated for each line using a restricted maximum-likelihood method applied to a pedigree-based multi-trait animal model. RESULTS: Estimates of genetic parameters were similar for the two lines. Estimates of heritability ranged from 0.18 to 0.37 for nest preference traits and from 0.54 to 0.70 for laying duration traits. Estimates of genetic correlations of these traits with clutch number or mean oviposition time were favorable. Positive genetic correlations were estimated between nest preference and laying rate in the nests or nest acceptance for laying (+ 0.06 to + 0.37). CONCLUSIONS: These results show that genetics influences traits related to nest preference and laying duration. Selecting hens that have no preference for particular nests and spend little time laying in the nests could help optimize nest use, reduce their occupation rate, and thus decrease the incidence of floor eggs in cage-free systems. Genetic correlations of these traits with other traits of interest related to hen welfare and egg quality have yet to be estimated.


Asunto(s)
Crianza de Animales Domésticos , Pollos , Animales , Femenino , Pollos/genética , Crianza de Animales Domésticos/métodos , Vivienda para Animales , Oviposición/genética , Huevos
4.
Front Genet ; 12: 655707, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262593

RESUMEN

In addition to their common usages to study gene expression, RNA-seq data accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous individuals from different populations. SNP detection by RNA-seq is particularly interesting for livestock species since whole genome sequencing is expensive and exome sequencing tools are unavailable. These SNPs detected in expressed regions can be used to characterize variants affecting protein functions, and to study cis-regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest. However, gene expression can be highly variable, and filters for SNP detection using the popular GATK toolkit are not yet standardized, making SNP detection and genotype calling by RNA-seq a challenging endeavor. We compared SNP calling results using GATK suggested filters, on two chicken populations for which both RNA-seq and DNA-seq data were available for the same samples of the same tissue. We showed, in expressed regions, a RNA-seq precision of 91% (SNPs detected by RNA-seq and shared by DNA-seq) and we characterized the remaining 9% of SNPs. We then studied the genotype (GT) obtained by RNA-seq and the impact of two factors (GT call-rate and read number per GT) on the concordance of GT with DNA-seq; we proposed thresholds for them leading to a 95% concordance. Applying these thresholds to 767 multi-tissue RNA-seq of 382 birds of 11 chicken populations, we found 9.5 M SNPs in total, of which ∼550,000 SNPs per tissue and population with a reliable GT (call rate ≥ 50%) and among them, ∼340,000 with a MAF ≥ 10%. We showed that such RNA-seq data from one tissue can be used to (i) detect SNPs with a strong predicted impact on proteins, despite their scarcity in each population (16,307 SIFT deleterious missenses and 590 stop-gained), (ii) study, on a large scale, cis-regulations of gene expression, with ∼81% of protein-coding and 68% of long non-coding genes (TPM ≥ 1) that can be analyzed for ASE, and with ∼29% of them that were cis-regulated, and (iii) analyze population genetic using such SNPs located in expressed regions. This work shows that RNA-seq data can be used with good confidence to detect SNPs and associated GT within various populations and used them for different analyses as GTEx studies.

5.
PLoS One ; 16(5): e0251037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34014946

RESUMEN

In cage-free systems, laying hens must lay their eggs in the nests. Selecting layers based on nesting behavior would be a good strategy for improving egg production in these breeding systems. However, little is known about the genetic determinism of nest-related traits. Laying rate in the nests (LRN), clutch number (CN), oviposition traits (OT), and nest acceptance for laying (NAL) of 1,430 Rhode Island Red (RIR) hens and 1,008 White Leghorn (WL) hens were recorded in floor pens provided with individual electronic nests. Heritability and genetic and phenotypic correlations of all traits were estimated over two recording periods-the peak (24-43 weeks of age) and the middle (44-64 weeks of age) of production-by applying the restricted maximum likelihood method to an animal model. The mean oviposition time (MOT) ranged from 2 h 5 min to 3 h and from 3 h 35 min to 3 h 44 min after turning on the lights for RIR and WL hens, respectively. The mean oviposition interval ranged from 24 h 3 min to 24 h 16 min. All heritability and correlation estimates were similar for RIR and WL. Low to moderate heritability coefficients were estimated for LRN (0.04-0.25) and moderate to high heritability coefficients for CN and OT (0.27-0.68). CN and OT were negatively genetically correlated with LRN (-0.92 to -0.39) except during peak production for RIR (-0.30 to +0.43). NAL was weakly to moderately heritable (0.13-0.26). Genetic correlations between NAL and other traits were low to moderate (-0.41 to +0.44). In conclusion, CN and OT are promising selection criteria to improve egg production in cage-free systems. NAL can be also used to reduce the number of eggs laid off-nest in these breeding systems. However, variability in MOT must be maintained to limit competition for the nests.


Asunto(s)
Crianza de Animales Domésticos/métodos , Cruzamiento/métodos , Comportamiento de Nidificación/fisiología , Animales , Biomarcadores , Pollos , Huevos , Femenino , Vivienda para Animales/tendencias , Oviposición/genética , Fenotipo , Selección Artificial/genética
6.
Poult Sci ; 99(5): 2324-2336, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32359567

RESUMEN

With the availability of the 600K Affymetrix Axiom high-density (HD) single nucleotide polymorphism (SNP) chip, genomic selection has been implemented in broiler and layer chicken. However, the cost of this SNP chip is too high to genotype all selection candidates. A solution is to develop a low-density SNP chip, at a lower price, and to impute all missing markers. But to routinely implement this solution, the impact of imputation on genomic evaluation accuracy must be studied. It is also interesting to study the consequences of the use of low-density SNP chips in genomic evaluation accuracy. In this perspective, the interest of using imputation in genomic selection was studied in a pure layer line. Two low-density SNP chip designs were compared: an equidistant methodology and a methodology based on linkage disequilibrium. Egg weight, egg shell color, egg shell strength, and albumen height were evaluated with single-step genomic best linear unbiased prediction methodology. The impact of imputation errors or the absence of imputation on the ranking of the male selection candidates was assessed with a genomic evaluation based on ancestry. Thus, genomic estimated breeding values (GEBV) obtained with imputed HD genotypes or low-density genotypes were compared with GEBV obtained with the HD SNP chip. The relative accuracy of GEBV was also investigated by considering as reference GEBV estimated on the offspring. A limited reordering of the breeders, selected on a multitrait index, was observed. Spearman correlations between GEBV on HD genotypes and GEBV on low-density genotypes (with or without imputation) were always higher than 0.94 with more than 3K SNP. For the genetically closer, top 150 individuals for a specific trait, with imputation, the reordering was reduced with correlation higher than 0.94 with more than 3K SNP. Without imputation, the correlations remained lower than 0.85 with less than 3K and 16K SNP for equidistant and linkage disequilibrium methodology, respectively. The differences in GEBV correlations between both methodologies were never significant. The conclusions were the same for all studied traits.


Asunto(s)
Pollos/genética , Genómica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Marcadores Genéticos , Genoma , Análisis de Secuencia por Matrices de Oligonucleótidos/economía , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Sensibilidad y Especificidad
7.
BMC Genet ; 21(1): 17, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046634

RESUMEN

BACKGROUND: Genomic evaluation, based on the use of thousands of genetic markers in addition to pedigree and phenotype information, has become the standard evaluation methodology in dairy cattle breeding programmes over the past several years. Despite the many differences between dairy cattle breeding and poultry breeding, genomic selection seems very promising for the avian sector, and studies are currently being conducted to optimize avian selection schemes. In this optimization perspective, one of the key parameters is to properly predict the accuracy of genomic evaluation in pure line layers. RESULTS: It was observed that genomic evaluation, whether performed on males or females, always proved more accurate than genetic evaluation. The gain was higher when phenotypic information was narrowed, and an augmentation of the size of the reference population led to an increase in accuracy prediction with regard to genomic evaluation. By taking into account the increase of selection intensity and the decrease of the generation interval induced by genomic selection, the expected annual genetic gain would be higher with ancestry-based genomic evaluation of male candidates than with genetic evaluation based on collaterals. This advantage of genomic selection over genetic selection requires more detailed further study for female candidates. CONCLUSIONS: In conclusion, in the population studied, the genomic evaluation of egg quality traits of breeding birds at birth seems to be a promising strategy, at least for the selection of males.


Asunto(s)
Huevos , Genoma , Genómica , Carácter Cuantitativo Heredable , Animales , Bovinos , Femenino , Estudios de Asociación Genética , Genómica/métodos , Genotipo , Masculino , Fenotipo
8.
Genomics ; 112(2): 1660-1673, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31669705

RESUMEN

Efforts to elucidate the causes of biological differences between wild fowls and their domesticated relatives, the chicken, have to date mainly focused on the identification of single nucleotide mutations. Other types of genomic variations have however been demonstrated to be important in avian evolution and associated to variations in phenotype. They include several types of sequences duplicated in tandem that can vary in their repetition number. Here we report on genome size differences between the red jungle fowl and several domestic chicken breeds and selected lines. Sequences duplicated in tandem such as rDNA, telomere repeats, satellite DNA and segmental duplications were found to have been significantly re-shaped during domestication and subsequently by human-mediated selection. We discuss the extent to which changes in genome organization that occurred during domestication agree with the hypothesis that domesticated animal genomes have been shaped by evolutionary forces aiming to adapt them to anthropized environments.


Asunto(s)
Cruzamiento , Pollos/genética , Domesticación , Tamaño del Genoma , Polimorfismo Genético , Animales , Centrómero/genética , Duplicación de Gen , ARN Ribosómico/genética , Secuencias Repetidas en Tándem , Telómero/genética
9.
BMC Genet ; 19(1): 108, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514201

RESUMEN

BACKGROUND: The main goal of selection is to achieve genetic gain for a population by choosing the best breeders among a set of selection candidates. Since 2013, the use of a high density genotyping chip (600K Affymetrix® Axiom® HD genotyping array) for chicken has enabled the implementation of genomic selection in layer and broiler breeding, but the genotyping costs remain high for a routine use on a large number of selection candidates. It has thus been deemed interesting to develop a low density genotyping chip that would induce lower costs. In this perspective, various simulation studies have been conducted to find the best way to select a set of SNPs for low density genotyping of two laying hen lines. RESULTS: To design low density SNP chips, two methodologies, based on equidistance (EQ) or on linkage disequilibrium (LD) were compared. Imputation accuracy was assessed as the mean correlation between true and imputed genotypes. The results showed correlations more sensitive to false imputation of SNPs having low Minor Allele Frequency (MAF) when the EQ methodology was used. An increase in imputation accuracy was obtained when SNP density was increased, either through an increase in the number of selected windows on a chromosome or through the rise of the LD threshold. Moreover, the results varied depending on the type of chromosome (macro or micro-chromosome). The LD methodology enabled to optimize the number of SNPs, by reducing the SNP density on macro-chromosomes and by increasing it on micro-chromosomes. Imputation accuracy also increased when the size of the reference population was increased. Conversely, imputation accuracy decreased when the degree of kinship between reference and candidate populations was reduced. Finally, adding selection candidates' dams in the reference population, in addition to their sire, enabled to get better imputation results. CONCLUSIONS: Whichever the SNP chip, the methodology, and the scenario studied, highly accurate imputations were obtained, with mean correlations higher than 0.83. The key point to achieve good imputation results is to take into account chicken lines' LD when designing a low density SNP chip, and to include the candidates' direct parents in the reference population.


Asunto(s)
Pollos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Animales , Pollos/crecimiento & desarrollo , Cromosomas , Frecuencia de los Genes , Genotipo , Desequilibrio de Ligamiento
10.
Dev Psychobiol ; 58(2): 185-97, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26419601

RESUMEN

In this study, we assessed whether prenatal exposure to elevated yolk steroid hormones can influence in ovo chemosensory learning and the behavior of domestic chicks. We simulated a maternal environmental challenge by experimentally enhancing yolk progesterone, testosterone, and estradiol concentrations in hen eggs prior to incubation. The embryos from these hormones-treated eggs (HO) as well as sham embryos (O) that had received the vehicle-only were exposed to the odor of fish oil (menhaden) between embryonic Days 11 and 20. An additional group of control embryos (C) was not exposed to the odor. All chicks were tested following hatching for their feeding preferences between foods that were or were not odorized with the menhaden odor. In the 3-min choice tests, the behavior of O chicks differed significantly according to the type of food whereas C and HO chicks showed no preference between odorized and non-odorized food. Our result suggests weaker response in HO chicks. In addition, HO chicks showed impaired growth and reduced intake of an unfamiliar food on the 24-h time scale compared to controls. Our data suggest that embryonic exposure to increased yolk hormone levels can alter growth, chemosensory learning, and the development of feeding behaviors.


Asunto(s)
Conducta Animal/efectos de los fármacos , Pollos/crecimiento & desarrollo , Estradiol/farmacología , Conducta Alimentaria/efectos de los fármacos , Hormonas/farmacología , Aprendizaje/efectos de los fármacos , Progesterona/farmacología , Testosterona/farmacología , Andrógenos/farmacología , Animales , Animales Recién Nacidos , Embrión de Pollo , Yema de Huevo/química , Estrógenos/farmacología , Femenino , Aceites de Pescado , Preferencias Alimentarias/efectos de los fármacos , Odorantes , Embarazo , Progestinas/farmacología
11.
Genet Sel Evol ; 47: 83, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26482360

RESUMEN

BACKGROUND: The genetic architecture of egg production and egg quality traits, i.e. the quantitative trait loci (QTL) that influence these traits, is still poorly known. To date, 33 studies have focused on the detection of QTL for laying traits in chickens, but less than 10 genes have been identified. The availability of a high-density SNP (single nucleotide polymorphism) chicken array developed by Affymetrix, i.e. the 600K Affymetrix(®) Axiom(®) HD genotyping array offers the possibility to narrow down the localization of previously detected QTL and to detect new QTL. This high-density array is also anticipated to take research beyond the classical hypothesis of additivity of QTL effects or of QTL and environmental effects. The aim of our study was to search for QTL that influence laying traits using the 600K SNP chip and to investigate whether the effects of these QTL differed between diets and age at egg collection. RESULTS: One hundred and thirty-one QTL were detected for 16 laying traits and were spread across all marked chromosomes, except chromosomes 16 and 25. The percentage of variance explained by a QTL varied from 2 to 10 % for the various traits, depending on diet and age at egg collection. Chromosomes 3, 9, 10 and Z were overrepresented, with more than eight QTL on each one. Among the 131 QTL, 60 had a significantly different effect, depending on diet or age at egg collection. For egg production traits, when the QTL × environment interaction was significant, numerous inversions of sign of the SNP effects were observed, whereas for egg quality traits, the QTL × environment interaction was mostly due to a difference of magnitude of the SNP effects. CONCLUSIONS: Our results show that numerous QTL influence egg production and egg quality traits and that the genomic regions, which are involved in shaping the ability of layer chickens to adapt to their environment for egg production, vary depending on the environmental conditions. The next question will be to address what the impact of these genotype × environment interactions is on selection.


Asunto(s)
Pollos/fisiología , Oviparidad , Sitios de Carácter Cuantitativo , Animales , Pollos/genética , Mapeo Cromosómico , Dieta , Femenino , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
12.
Genet Sel Evol ; 35(4): 385-402, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12927073

RESUMEN

Segregation analyses were performed using both maximum likelihood--via a Quasi Newton algorithm--(ML-QN) and Bayesian--via Gibbs sampling--(Bayesian-GS) approaches in the Chinese European Tiameslan pig line. Major genes were searched for average ultrasonic backfat thickness (ABT), carcass fat (X2 and X4) and lean (X5) depths, days from 20 to 100 kg (D20100), Napole technological yield (NTY), number of false (FTN) and good (GTN) teats, as well as total teat number (TTN). The discrete nature of FTN was additionally considered using a threshold model under ML methodology. The results obtained with both methods consistently suggested the presence of major genes affecting ABT, X2, NTY, GTN and FTN. Major genes were also suggested for X4 and X5 using ML-QN, but not the Bayesian-GS, approach. The major gene affecting FTN was confirmed using the threshold model. Genetic correlations as well as gene effect and genotype frequency estimates suggested the presence of four different major genes. The first gene would affect fatness traits (ABT, X2 and X4), the second one a leanness trait (X5), the third one NTY and the last one GTN and FTN. Genotype frequencies of breeding animals and their evolution over time were consistent with the selection performed in the Tiameslan line.


Asunto(s)
Composición Corporal/genética , Carne , Porcinos/genética , Animales , Teorema de Bayes , Marcadores Genéticos/genética , Patrón de Herencia/genética , Funciones de Verosimilitud , Modelos Genéticos , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...