Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4966, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862522

RESUMEN

Viviparity evolved ~115 times across squamate reptiles, facilitating the colonization of cold habitats, where oviparous species are scarce or absent. Whether the ecological opportunity furnished by such colonization reconfigures phenotypic diversity and accelerates evolution is unclear. We investigated the association between viviparity and patterns and rates of body size evolution in female Liolaemus lizards, the most species-rich tetrapod genus from temperate regions. Here, we discover that viviparous species evolve ~20% larger optimal body sizes than their oviparous relatives, but exhibit similar rates of body size evolution. Through a causal modeling approach, we find that viviparity indirectly influences body size evolution through shifts in thermal environment. Accordingly, the colonization of cold habitats favors larger body sizes in viviparous species, reconfiguring body size diversity in Liolaemus. The catalyzing influence of viviparity on phenotypic evolution arises because it unlocks access to otherwise inaccessible sources of ecological opportunity, an outcome potentially repeated across the tree of life.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Ecosistema , Lagartos , Viviparidad de Animales no Mamíferos , Animales , Lagartos/fisiología , Femenino , Viviparidad de Animales no Mamíferos/fisiología , Filogenia , Fenotipo , Oviparidad
2.
Evolution ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644756

RESUMEN

Colonization of a novel geographic area is a classic source of ecological opportunity. Likewise, complex microhabitats are thought to promote biodiversity. We sought to reconcile these two predictions when they are naturally opposing outcomes. We assess the macroevolutionary consequences of an ancestral shift from benthic to pelagic microhabitat zones on rates of speciation and phenotypic evolution in North American minnows. Pelagic species have more similar phenotypes and slower rates of phenotypic evolution, but faster speciation rates, than benthic species. These are likely two independent, opposing responses to specialization along the benthic-pelagic axis, as rates of phenotypic evolution and speciation are not directly correlated. The pelagic zone is more structurally homogenous and offers less ecological opportunity, acting as an ecological dead end for minnows. In contrast, pelagic species may be more mobile and prone to dispersal and subsequent geographic isolation and, consequently, experience elevated instances of allopatric speciation. Microhabitat shifts can have decoupled effects on different dimensions of biodiversity, highlighting the need for nuance when interpreting the macroevolutionary consequences of ecological opportunity.

3.
Evolution ; 77(11): 2365-2377, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37624672

RESUMEN

Geographic access to isolated ecosystems is an important catalyst of adaptive radiation. Cichlid fishes repeatedly colonized rift, crater, and volcanic lakes from surrounding rivers. We test the "lake effect" on the phenotypic rate and state across 253 cichlid species. The rate of evolution was consistently higher (~10-fold) in lakes, and consistent across different dimensions of the phenotype. Rate shifts tended to occur coincident with or immediately following river-to-lake transitions, generally resulting in 2- to 5-fold faster rates than in the founding riverine lineage. By contrast, river- and lake-dwelling cichlids exhibit considerable overlap in phenotypes, generally with less disparity in lakes, but often different evolutionary optima. Taken together, these results suggest that lake radiations rapidly expand into niches largely already represented by ancestral riverine lineages, albeit in different frequencies. Lakes may provide ecological opportunity via ecological release (e.g., from predators/competitors) but need not be coupled with access to novel ecological niches.


Asunto(s)
Cíclidos , Lagos , Animales , Filogenia , Ríos , Ecosistema , Cíclidos/genética , Fenotipo
4.
Evolution ; 77(9): 1917-1929, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326103

RESUMEN

The modified pharyngeal jaw system of cichlid fishes is widely viewed as a key innovation that substantially facilitated the evolutionary exuberance of this iconic evolutionary radiation. We conduct comparative phylogenetic analyses of integration, disparity, and rate of evolution among feeding-related, skeletal structures in Neotropical cichlids and North American centrarchids, which lack the specialized pharyngeal jaw. Contrasting evolutionary patterns in these two continental radiations, we test a classic decoupling hypothesis. Specifically, we ask whether the modified pharyngeal jaw in cichlids resulted in enhanced evolutionary independence of the oral and pharyngeal jaws, leading to increased diversity of trophic structures. Contrary to this prediction, we find significantly stronger evolutionary integration between the oral and pharyngeal jaws in cichlids compared to centrarchids, although the two groups do not differ in patterns of integration within each jaw system. Further, though we find no significant differences in disparity, centrarchids show faster rates of morphological evolution. Our results suggest that the modified pharyngeal jaw resulted in less evolutionary independence and slower rates of evolution within the feeding system. Thus, we raise the possibility that the cichlid novelty enhances feeding performance, but does not prompt increased morphological diversification within the feeding apparatus, as has long been thought.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Cíclidos/anatomía & histología , Filogenia , Maxilares/anatomía & histología , Evolución Biológica , Conducta Alimentaria
5.
Syst Biol ; 72(1): 120-133, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35244182

RESUMEN

Explosive bouts of diversification are one of the most conspicuous features of the tree of life. When such bursts are repeated in similar environments, it suggests some degree of predictability in the evolutionary process. We assess parallel adaptive radiation of South American pike cichlids (Crenicichla) using phylogenomics and phylogenetic comparative methods. We find that species flocks in the Uruguay and Iguazú River basins rapidly diversified into the same set of ecomorphs that reflect feeding ecology. Both adaptive radiations involve expansion of functional morphology, resulting in unique jaw phenotypes. Yet, form and function were decoupled such that most ecomorphs share similar mechanical properties of the jaws (i.e., jaw motion during a feeding strike). Prey mobility explained 6- to 9-fold differences in the rate of morphological evolution but had no effect on the rate of mechanical evolution. We find no evidence of gene flow between species flocks or with surrounding coastal lineages that may explain their rapid diversification. When compared with cichlids of the East African Great Lakes and other prominent adaptive radiations, pike cichlids share many themes, including the rapid expansion of phenotypic diversity, specialization along the benthic-to-pelagic habitat and soft-to-hard prey axes, and the evolution of conspicuous functional innovations. Yet, decoupled evolution of form and function and the absence of hybridization as a catalyzing force are departures from patterns observed in other adaptive radiations. Many-to-one mapping of morphology to mechanical properties is a mechanism by which pike cichlids attain a diversity of feeding ecologies while avoiding exacerbating underlying mechanical trade-offs. [Adaptive radiation; ecological opportunity; feeding kinematics; functional trade-off; hybridization; introgression.].


Asunto(s)
Cíclidos , Animales , Filogenia , Cíclidos/genética , Ecosistema , Maxilares/anatomía & histología , América del Sur , Evolución Biológica
6.
Syst Biol ; 72(1): 150-160, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35961046

RESUMEN

Trade-offs are thought to bias evolution and are core features of many anatomical systems. Therefore, trade-offs may have far-reaching macroevolutionary consequences, including patterns of morphological, functional, and ecological diversity. Jaws, like many complex anatomical systems, are comprised of elements involved in biomechanical trade-offs. We test the impact of a core mechanical trade-off, the transmission of velocity versus force (i.e., mechanical advantage), on rates of jaw evolution in Neotropical cichlids. Across 130 species representing a wide array of feeding ecologies, we find that the velocity-force trade-off impacts the evolution of the surrounding jaw system. Specifically, rates of jaw evolution are faster at functional extremes than in more functionally intermediate or unspecialized jaws. Yet, surprisingly, the effect on jaw evolution is uneven across the extremes of the velocity-force continuum. Rates of jaw evolution are 4- to 10-fold faster in velocity-modified jaws, whereas force-modified jaws are 7- to 18-fold faster, compared to unspecialized jaws, depending on the extent of specialization. Further, we find that a more extreme mechanical trade-off resulted in faster rates of jaw evolution. The velocity-force trade-off reflects a gradient from specialization on capture-intensive (e.g., evasive or buried) to processing-intensive prey (e.g., attached or shelled), respectively. The velocity extreme of the trade-off is characterized by large magnitudes of trait change leading to functionally divergent specialists and ecological stasis. By contrast, the force extreme of the trade-off is characterized by enhanced ecological lability made possible by phenotypes more readily co-opted for different feeding ecologies. This asymmetry of macroevolutionary outcomes along each extreme is likely the result of an enhanced utility of the pharyngeal jaw system as force-modified oral jaws are adapted for prey that requires intensive processing (e.g., algae, detritus, and mollusks). The velocity-force trade-off, a fundamental feature of many anatomical systems, promotes rapid phenotypic evolution of the surrounding jaw system in a canonical continental adaptive radiation. Considering that the velocity-force trade-off is an inherent feature of all jaw systems that involve a lower element that rotates at a joint, spanning the vast majority of vertebrates, our results may be widely applicable across the tree of life. [Adaptive radiation; constraint; decoupling; jaws; macroevolution; specialization.].


Asunto(s)
Cíclidos , Maxilares , Animales , Filogenia , Fenómenos Biomecánicos , Maxilares/anatomía & histología , Cíclidos/genética , Fenotipo , Evolución Biológica
7.
Proc Natl Acad Sci U S A ; 119(31): e2119828119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881791

RESUMEN

Diversity of feeding mechanisms is a hallmark of reef fishes, but the history of this variation is not fully understood. Here, we explore the emergence and proliferation of a biting mode of feeding, which enables fishes to feed on attached benthic prey. We find that feeding modes other than suction, including biting, ram biting, and an intermediate group that uses both biting and suction, were nearly absent among the lineages of teleost fishes inhabiting reefs prior to the end-Cretaceous mass extinction, but benthic biting has rapidly increased in frequency since then, accounting for about 40% of reef species today. Further, we measured the impact of feeding mode on body shape diversification in reef fishes. We fit a model of multivariate character evolution to a dataset comprising three-dimensional body shape of 1,530 species of teleost reef fishes across 111 families. Dedicated biters have accumulated over half of the body shape variation that suction feeders have in just 18% of the evolutionary time by evolving body shape ∼1.7 times faster than suction feeders. As a possible response to the ecological and functional diversity of attached prey, biters have dynamically evolved both into shapes that resemble suction feeders as well as novel body forms characterized by lateral compression and small jaws. The ascendance of species that use biting mechanisms to feed on attached prey reshaped modern reef fish assemblages and has been a major contributor to their ecological and phenotypic diversification.


Asunto(s)
Evolución Biológica , Arrecifes de Coral , Extinción Biológica , Conducta Alimentaria , Peces , Somatotipos , Animales , Peces/anatomía & histología , Peces/fisiología , Masculino
8.
Nat Ecol Evol ; 6(8): 1211-1220, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35835827

RESUMEN

Spiny-rayed fishes (Acanthomorpha) dominate modern marine habitats and account for more than a quarter of all living vertebrate species. Previous time-calibrated phylogenies and patterns from the fossil record explain this dominance by correlating the origin of major acanthomorph lineages with the Cretaceous-Palaeogene mass extinction. Here we infer a time-calibrated phylogeny using ultraconserved elements that samples 91.4% of all acanthomorph families and investigate patterns of body shape disparity. Our results show that acanthomorph lineages steadily accumulated throughout the Cenozoic and underwent a significant expansion of among-clade morphological disparity several million years after the end-Cretaceous. These acanthomorph lineages radiated into and diversified within distinct regions of morphospace that characterize iconic lineages, including fast-swimming open-ocean predators, laterally compressed reef fishes, bottom-dwelling flatfishes, seahorses and pufferfishes. The evolutionary success of spiny-rayed fishes is the culmination of multiple species-rich and phenotypically disparate lineages independently diversifying across the globe under a wide range of ecological conditions.


Asunto(s)
Biodiversidad , Peces , Animales , Evolución Biológica , Extinción Biológica , Peces/anatomía & histología , Fósiles
9.
Integr Comp Biol ; 61(3): 773-782, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34165524

RESUMEN

Ray-finned fishes have two jaw systems, the oral and pharyngeal jaws, which perform functions associated with prey capture and processing, respectively. The structural independence of the jaw systems is recognized as having broad implications for the functional and ecological diversity of the radiation. Cichlids (and a few other lineages) possess a modified pharyngeal jaw system that enhances prey processing versatility and capacity. This innovation, pharyngognathy, is hypothesized to have freed the oral jaws to diversify in terms of prey capture. We test the relative role of prey capture properties (e.g., evasiveness) and prey processing (e.g., crushing) in driving divergent selection in the oral and pharyngeal jaws using a macroevolutionary model fitting framework. Evolutionary outcomes were asymmetric. All transitions between different properties of prey capture had a corresponding transition in properties of prey processing. In contrast, fewer than half the transitions in the properties of prey processing had a corresponding prey capture transition. This discrepancy was further highlighted by multi-peak models that reflect the opposing function of each jaw system, which fit better than null models for oral jaw traits, but not pharyngeal jaw traits. These results suggest that pharyngeal jaw function can change independently from the function of the oral jaws, but not vice versa. This finding highlights the possibility of ecological limits to the evolutionary decoupling of jaw systems. The independent actions of prey capture and processing may be decoupled, but their respective functional demands (and evolution) are not. Therefore, prey likely impose some degree of coordinated evolution between acquisition and processing functional morphology, even in decoupled jaw systems.


Asunto(s)
Evolución Biológica , Cíclidos , Maxilares , Animales , Fenómenos Biomecánicos , Cíclidos/anatomía & histología , Maxilares/anatomía & histología , Faringe , Conducta Predatoria
10.
Syst Biol ; 71(1): 93-104, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33956152

RESUMEN

Islands are thought to facilitate adaptive radiation by providing release from competition and predation. Anole lizards are considered a classic example of this phenomenon: different ecological specialists ("ecomorphs") evolved in the Caribbean Greater Antilles (Cuba, Hispaniola, Jamaica, and Puerto Rico), resulting in convergent assemblages that are not observed in mainland Latin America. Yet, the role of islands in facilitating adaptive radiation is more often implied than directly tested, leaving uncertain the role of biogeography in stimulating diversification. Here, we assess the proposed "island effect" on anole diversification using Bayesian phylogenetic comparative methods that explicitly incorporate rate heterogeneity across the tree and demonstrate two cases of would be false positives. We discovered that rates of speciation and morphological evolution of island and mainland anoles are equivalent, implying that islands provide no special context for exceptionally rapid diversification. Likewise, rates of evolution were equivalent between island anoles that arose via in situ versus dispersal-based mechanisms, and we found no evidence for island-specific rates of speciation or morphological evolution. Nonetheless, the origin of Anolis is characterized by a speciation pulse that slowed over time-a classic signature of waning ecological opportunity. Our findings cast doubt on the notion that islands catalyzed the anole adaptive radiation and instead point to a key innovation, adhesive toe pads, which facilitated the exploitation of many arboreal niches sparsely utilized by other iguanian lizards. The selective pressures responsible for arboreal niche diversification differ between islands and the mainland, but the tempo of diversification driven by these discordant processes is indistinguishable. [Anolis; Caribbean; key innovation; morphological evolution; RevBayes; speciation.].


Asunto(s)
Biodiversidad , Lagartos , Animales , Teorema de Bayes , Lagartos/clasificación , Filogenia , Especificidad de la Especie , Indias Occidentales
11.
Syst Biol ; 70(4): 681-693, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33331913

RESUMEN

Trade-offs caused by the use of an anatomical apparatus for more than one function are thought to be an important constraint on evolution. However, whether multifunctionality suppresses diversification of biomechanical systems is challenged by recent literature showing that traits more closely tied to trade-offs evolve more rapidly. We contrast the evolutionary dynamics of feeding mechanics and morphology between fishes that exclusively capture prey with suction and multifunctional species that augment this mechanism with biting behaviors to remove attached benthic prey. Diversification of feeding kinematic traits was, on average, over 13.5 times faster in suction feeders, consistent with constraint on biters due to mechanical trade-offs between biting and suction performance. Surprisingly, we found that the evolution of morphology contrasts directly with these differences in kinematic evolution, with significantly faster rates of evolution of head shape in biters. This system provides clear support for an often postulated, but rarely confirmed prediction that multifunctionality stifles functional diversification, while also illustrating the sometimes weak relationship between form and function. [Form-function evolution; geometric morphometrics; kinematic evolution; macroevolution; Ornstein-Uhlenbeck; RevBayes; suction feeding].


Asunto(s)
Conducta Alimentaria , Peces , Animales , Evolución Biológica , Fenómenos Biomecánicos , Filogenia
12.
Evolution ; 74(5): 950-961, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32246835

RESUMEN

Functional decoupling of oral and pharyngeal jaws is widely considered to have expanded the ecological repertoire of cichlid fishes. But, the degree to which the evolution of these jaw systems is decoupled and whether decoupling has impacted trophic diversification remains unknown. Focusing on the large Neotropical radiation of cichlids, we ask whether oral and pharyngeal jaw evolution is correlated and how their evolutionary rates respond to feeding ecology. In support of decoupling, we find relaxed evolutionary integration between the two jaw systems, resulting in novel trait combinations that potentially facilitate feeding mode diversification. These outcomes are made possible by escaping the mechanical trade-off between force transmission and mobility, which characterizes a single jaw system that functions in isolation. In spite of the structural independence of the two jaw systems, results using a Bayesian, state-dependent, relaxed-clock model of multivariate Brownian motion indicate strongly aligned evolutionary responses to feeding ecology. So, although decoupling of prey capture and processing functions released constraints on jaw evolution and promoted trophic diversity in cichlids, the natural diversity of consumed prey has also induced a moderate degree of evolutionary integration between the jaw systems, reminiscent of the original mechanical trade-off between force and mobility.


Asunto(s)
Evolución Biológica , Cíclidos/fisiología , Dieta/veterinaria , Conducta Alimentaria , Maxilares/anatomía & histología , Animales , Cíclidos/anatomía & histología , Maxilares/fisiología
13.
Evolution ; 74(5): 936-949, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32187649

RESUMEN

Cave adaptation has evolved repeatedly across the Tree of Life, famously leading to pigmentation and eye degeneration and loss, yet its macroevolutionary implications remain poorly understood. We use the North American amblyopsid fishes, a family spanning a wide degree of cave adaptation, to examine the impact of cave specialization on the modes and tempo of evolution. We reconstruct evolutionary relationships using ultraconserved element loci, estimate the ancestral histories of eye-state, and examine the impact of cave adaptation on body shape evolution. Our phylogenomic analyses provide a well-supported hypothesis for amblyopsid evolutionary relationships. The obligate blind cavefishes form a clade and the cave-facultative eyed spring cavefishes are nested within the obligate cavefishes. Using ancestral state reconstruction, we find support for at least two independent subterranean colonization events within the Amblyopsidae. Eyed and blind fishes have different body shapes, but not different rates of body shape evolution. North American amblyopsids highlight the complex nature of cave-adaptive evolution and the necessity to include multiple lines of evidence to uncover the underlying processes involved in the loss of complex traits.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Peces/anatomía & histología , Peces/genética , Animales , Cuevas , Ojo/anatomía & histología , Peces/clasificación , América del Norte , Filogenia , Pigmentación
14.
Am Nat ; 194(5): 693-706, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31613667

RESUMEN

Functional innovations are often invoked to explain the uneven distribution of ecological diversity. Innovations may provide access to new adaptive zones by expanding available ecological opportunities and may serve as catalysts of adaptive radiation. However, diversity is often unevenly distributed within clades that share a key innovation, highlighting the possibility that the impact of the innovation is mediated by other traits. Pharyngognathy is a widely recognized innovation of the pharyngeal jaws that enhances the ability to process hard and tough prey in several major radiations of fishes, including marine wrasses and freshwater cichlids. We explored diversification of lower pharyngeal jaw shape, a key feature of pharyngognathy, and the extent to which it is influenced by head shape in Neotropical cichlids. While pharyngeal jaw shape was unaffected by either head length or head depth, its disparity declined dramatically with increasing head width. Head width also predicted the rate of pharyngeal jaw evolution such that higher rates were associated with narrow heads. Wide heads are associated with exploiting prey that require intense processing by pharyngeal jaws that have expanded surfaces for the attachment of enlarged muscles. However, we show that a wide head constrains access to adaptive peaks associated with several trophic roles. A constraint on the independent evolution of pharyngeal jaw and head shape may explain the uneven distribution of ecological diversity within a clade that shares a major functional innovation.


Asunto(s)
Cíclidos/anatomía & histología , Cabeza/anatomía & histología , Maxilares/anatomía & histología , Animales , Evolución Biológica , Dieta , Conducta Predatoria
15.
Evolution ; 73(2): 346-359, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30592533

RESUMEN

Early burst patterns of diversification have become closely linked with concepts of adaptive radiation, reflecting interest in the role of ecological opportunity in modulating diversification. But, this model has not been widely explored on coral reefs, where biodiversity is exceptional, but many lineages have high dispersal capabilities and a pan-tropical distribution. We analyze adaptive radiation in labrid fishes, arguably the most ecologically dominant and diverse radiation of fishes on coral reefs. We test for time-dependent speciation, trophic diversification, and origination of 15 functional innovations, and early bursts in a series of functional morphological traits associated with feeding and locomotion. We find no evidence of time-dependent or early burst evolution. Instead, the pace of speciation, ecological diversification, and trait evolution has been relatively constant. The origination of functional innovations has slowed over time, although few arose early. The labrid radiation seems to have occurred in response to extensive and still increasing ecological opportunity, but within a rich community of antagonists that may have prevented abrupt diversification. Labrid diversification is closely tied to a series of substantial functional innovations that individually broadened ecological diversity, ultimately allowing them to invade virtually every trophic niche held by fishes on coral reefs.


Asunto(s)
Adaptación Fisiológica/genética , Ecosistema , Peces/genética , Peces/fisiología , Especiación Genética , Variación Genética , Animales , Dinámica Poblacional
16.
Proc Biol Sci ; 285(1870)2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29298932

RESUMEN

Parallel adaptive radiations have arisen following the colonization of islands by lizards and lakes by fishes. In these classic examples, parallel adaptive radiation is a response to the ecological opportunities afforded by the colonization of novel ecosystems and similar adaptive landscapes that favour the evolution of similar suites of ecomorphs, despite independent evolutionary histories. Here, we demonstrate that parallel adaptive radiations of cichlid fishes arose in South American rivers. Speciation-assembled communities of pike cichlids (Crenicichla) have independently diversified into similar suites of novel ecomorphs in the Uruguay and Paraná Rivers, including crevice feeders, periphyton grazers and molluscivores. There were bursts in phenotypic evolution associated with the colonization of each river and the subsequent expansion of morphospace following the evolution of the ecomorphs. These riverine clades demonstrate that characteristics emblematic of textbook parallel adaptive radiations of island- and lake-dwelling assemblages are feasible evolutionary outcomes even in labile ecosystems such as rivers.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Cíclidos/genética , Ríos , Animales , Cíclidos/anatomía & histología , Ecosistema , Islas , Lagos , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple/genética , Uruguay , Secuenciación Completa del Genoma
17.
Neotrop. ichthyol ; 16(4): [e170167], out. 2018. mapas, ilus, graf, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-964046

RESUMEN

Alterations in natural landscapes, mainly caused by anthropic pressures, have been threatening the world's biomes, including aquatic environments and its biota. This study describes the diet of Bryconamericus iheringii, and how its body shape relates to environmental variables in populations of 22 streams. A wide array of food items were found, mainly composed of allochthonous plants (50.5%) and autochthonous invertebrates (25.2%). Even though food items remained almost the same, the predominant food group significantly differed among streams, mainly in relation to environmental characteristics. There was variation in body shape primarily associated with body depth and length of the pre-dorsal region; however, these differences did not correspond with streams. PLS-CA analyses indicated that environmental characteristics, such as substrate type, percentage of marginal vegetation have some influence over food items availability but not on body shape. This may be because B. iheringii is a non-specialist species capable of prey switching based on availability due to an intermediate body shape suited for generalist feeding habits.(AU)


Alterações em paisagens naturais, principalmente as causadas por pressão antrópica, tem ameaçado os biomas mundiais, incluindo ambientes aquáticos e sua biota. Este estudo descreve a dieta de B. iheringii e como seu formato corporal se relaciona com variáveis ambientais, em populações de 22 riachos. Uma grande variedade de itens alimentares foi encontrada, principalmente compostos por plantas alóctones (50,5%) e invertebrados autóctones (25,2%). Ainda que os itens alimentares tenham permanecido quase os mesmos, o grupo alimentar predominante diferiu significativamente entre riachos, principalmente devido a características ambientais. Ocorreu variação no formato corporal principalmente associado com profundidade do corpo e comprimento da região pré-dorsal; entretanto, tais diferenças não corresponderam aos agrupamentos por riacho. A análise PLS-CA indicou que as características ambientais, tais como tipo de substrato, porcentagem de vegetação marginal exercem alguma influência sobre a disponibilidade dos itens alimentares, mas não sobre o formato corporal. Isso pode ocorrer por B. iheringii ser uma espécie não especialista com capacidade de mudar suas presas de acordo a com disponibilidade das mesmas, isto, devido ao seu formato corporal intermediário adequado a hábitos generalistas.(AU)


Asunto(s)
Animales , Composición Corporal/genética , Characidae/anatomía & histología , Ecosistema
18.
Evolution ; 71(11): 2650-2660, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28895124

RESUMEN

The uneven distribution of diversity is a conspicuous phenomenon across the tree of life. Ecological opportunity is a prominent catalyst of adaptive radiation and therefore may alter patterns of diversification. We evaluated the distribution of shifts in diversification rates across the cichlid phylogeny and the distribution of major clades across phylogenetic space. We also tested if ecological opportunity influenced these patterns. Colonization-associated ecological opportunity altered the tempo and mode of diversification during the adaptive radiation of cichlid fishes. Clades that arose following colonization events diversified faster than other clades. Speciation rate shifts were nonrandomly distributed across the phylogeny such that they were disproportionally concentrated around nodes that corresponded with colonization events (i.e., of continents, river basins, or lakes). Young clades tend to expand faster than older clades; however, colonization-associated ecological opportunity accentuated this pattern. There was an interaction between clade age and ecological opportunity that explained the trajectory of clades through phylogenetic space over time. Our results indicate that ecological opportunities afforded by continental and ecosystem-scale colonization events explain the dramatic speciation rate heterogeneity and phylogenetic imbalance that arose during the evolutionary history of cichlid fishes.


Asunto(s)
Cíclidos/genética , Ecosistema , Evolución Molecular , Especiación Genética , Selección Genética , Adaptación Fisiológica , Distribución Animal , Animales , Cíclidos/clasificación , Filogenia
19.
R Soc Open Sci ; 3(5): 150652, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27293777

RESUMEN

Body size has many ecological and evolutionary implications that extend across multiple levels of organization. Body size is often positively correlated with species traits such as metabolism, prey size and trophic position (TP) due to physiological and mechanical constraints. We used stable isotope analysis to quantify TP among minnows across multiple assemblages that differed in their species composition, diversity and food web structure. Body size significantly predicted TP across different lineages and assemblages, and indicated a significant negative relationship. The observed negative relationship between body size and TP is contrary to conventional knowledge, and is likely to have arisen owing to highly clade-specific patterns, such that clades consist of either large benthic species or small pelagic species. Cyprinids probably subvert the physiological and mechanical constraints that generally produce a positive relationship between body size and TP using anatomical modifications and by consuming small-bodied prey, respectively. The need for herbivorous cyprinids to digest cellulose-rich foods probably selected for larger bodies to accommodate longer intestinal tracts and thereby to facilitate digestion of nutrient-poor resources, such as algae. Therefore, body size and TP are likely to have coevolved in cyprinids in association with specialization along the benthic to pelagic resource axis.

20.
J Anim Ecol ; 85(1): 302-13, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26476003

RESUMEN

Innovations can facilitate bursts of diversification by increasing access to novel resources and the attainment of novel functional designs. Pharyngognathy, exhibited by highly diverse groups such as wrasses and cichlid fishes, is hypothesized to increase foraging capacity and efficiency. Here, I test the hypothesis that pharyngeal jaw shape and tooth morphology are adaptive in an ecologically diverse radiation of Neotropical cichlid fishes that spans North, Central and South America. I partitioned species into generalized trophic guilds using published stomach content analyses and quantified shape variation of the lower pharyngeal jaw (LPJ) using geometric morphometrics. Additionally, I tested for convergence in LPJ shape and trophic guild by mapping the phylogeny onto the principal components and testing for shifts towards similar evolutionary regimes. Major LPJ shape variation included the length and orientation (i.e. narrow or wide) of the lateral processes and length of the medial process, which varied based on the proportion of fishes and plants consumed. Pharyngeal tooth number, diversity and the frequency of tooth types were not evenly distributed among trophic guilds. There were seven distinct evolutionary regimes that converged upon four optima. Pharyngeal jaw diversification is associated with the exploitation of novel resources among Neotropical cichlids such that pharyngeal specialization has increased access to otherwise poorly accessible resources, such as resources that are difficult to crush (e.g. hard-shelled organisms) and assimilate (e.g. algae).


Asunto(s)
Biodiversidad , Evolución Biológica , Cíclidos/anatomía & histología , Cíclidos/fisiología , Maxilares/anatomía & histología , Animales , América Central , Conducta Alimentaria , América del Norte , Filogenia , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...