Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
3.
Nature ; 628(8009): 765-770, 2024 Apr.
Article En | MEDLINE | ID: mdl-38658685

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.

4.
Sci Immunol ; 9(93): eadd4818, 2024 Mar.
Article En | MEDLINE | ID: mdl-38427718

T follicular helper (TFH) cells are essential for effective antibody responses, but deciphering the intrinsic wiring of mouse TFH cells has long been hampered by the lack of a reliable protocol for their generation in vitro. We report that transforming growth factor-ß (TGF-ß) induces robust expression of TFH hallmark molecules CXCR5 and Bcl6 in activated mouse CD4+ T cells in vitro. TGF-ß-induced mouse CXCR5+ TFH cells are phenotypically, transcriptionally, and functionally similar to in vivo-generated TFH cells and provide critical help to B cells. The study further reveals that TGF-ß-induced CXCR5 expression is independent of Bcl6 but requires the transcription factor c-Maf. Classical TGF-ß-containing T helper 17 (TH17)-inducing conditions also yield separate CXCR5+ and IL-17A-producing cells, highlighting shared and distinct cell fate trajectories of TFH and TH17 cells. We demonstrate that excess IL-2 in high-density T cell cultures interferes with the TGF-ß-induced TFH cell program, that TFH and TH17 cells share a common developmental stage, and that c-Maf acts as a switch factor for TFH versus TH17 cell fates in TGF-ß-rich environments in vitro and in vivo.


T-Lymphocytes, Helper-Inducer , Transforming Growth Factor beta , Animals , Mice , Transforming Growth Factor beta/metabolism , B-Lymphocytes , CD4-Positive T-Lymphocytes , Cell Differentiation , Proto-Oncogene Proteins c-maf/metabolism
5.
Med Teach ; : 1-9, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38359431

In a rapidly changing healthcare environment, we need a robust evidence base to inform effective education and training. This study aimed to examine factors perceived to determine career progression in clinical education research in the UK. Six online focus groups were conducted, with 35 participants from a range of medical, dental, nursing, and allied health professions who identified as aspiring or early career clinical education researchers. Transcripts underwent thematic analysis. Two themes and associated subthemes were constructed to illustrate perceived factors impacting on career development: (1) A cultural challenge from clinical norms. Challenges included differences between the epistemological assumptions of biomedical and clinical research, and the underlying philosophy of education research, which is more closely aligned with the knowledge generation of the social sciences. This led to difficulty communicating the impact of education research to patient care. There were also blurred boundaries between education delivery and research, with the latter lacking a clearly defined group identity. (2) Structures, systems and relationships for career progression. Practical considerations included time and funding (or lack thereof), the opportunity to undertake formal training, networking and role models. This research highlights a number of systemic barriers and facilitators to careers in clinical education research and offers targets of intervention to enable a sustainable academic workforce in clinical education research.

6.
Sci Immunol ; 8(90): eabo5558, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38100544

Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.


Neoplasms , T-Lymphocytes, Regulatory , Mice , Humans , Animals , Interleukin-10/metabolism , Neoplasms/therapy , Neoplasms/metabolism , Immunotherapy , Forkhead Transcription Factors/metabolism
7.
Sensors (Basel) ; 23(21)2023 Nov 03.
Article En | MEDLINE | ID: mdl-37960645

Microsurgery serves as the foundation for numerous operative procedures. Given its highly technical nature, the assessment of surgical skill becomes an essential component of clinical practice and microsurgery education. The interaction forces between surgical tools and tissues play a pivotal role in surgical success, making them a valuable indicator of surgical skill. In this study, we employ six distinct deep learning architectures (LSTM, GRU, Bi-LSTM, CLDNN, TCN, Transformer) specifically designed for the classification of surgical skill levels. We use force data obtained from a novel sensorized surgical glove utilized during a microsurgical task. To enhance the performance of our models, we propose six data augmentation techniques. The proposed frameworks are accompanied by a comprehensive analysis, both quantitative and qualitative, including experiments conducted with two cross-validation schemes and interpretable visualizations of the network's decision-making process. Our experimental results show that CLDNN and TCN are the top-performing models, achieving impressive accuracy rates of 96.16% and 97.45%, respectively. This not only underscores the effectiveness of our proposed architectures, but also serves as compelling evidence that the force data obtained through the sensorized surgical glove contains valuable information regarding surgical skill.


Deep Learning , Microsurgery , Microsurgery/education , Microsurgery/methods , Clinical Competence , Gloves, Surgical
8.
Nanoscale ; 15(37): 15304-15317, 2023 Sep 29.
Article En | MEDLINE | ID: mdl-37682040

Identification of non-amplified DNA sequences and single-base mutations is essential for molecular biology and genetic diagnostics. This paper reports a novel sensor consisting of electrochemically-gated graphene coplanar waveguides coupled with a microfluidic channel. Upon exposure to analytes, propagation of electromagnetic waves in the waveguides is modified as a result of interactions with the fringing field and modulation of graphene dynamic conductivity resulting from electrostatic gating. Probe DNA sequences are immobilised on the graphene surface, and the sensor is exposed to DNA sequences which either perfectly match the probe, contain a single-base mismatch or are unrelated. By monitoring the scattering parameters at frequencies between 50 MHz and 50 GHz, unambiguous and reproducible discrimination of the different strands is achieved at concentrations as low as one attomole per litre (1 aM). By controlling and synchronising frequency sweeps, electrochemical gating, and liquid flow in the microfluidic channel, the sensor generates multidimensional datasets. Advanced data analysis techniques are utilised to take full advantage of the richness of the dataset. A classification accuracy >97% between all three sequences is achieved using different Machine Learning models, even in the presence of simulated noise and low signal-to-noise ratios. The sensor exceeds state-of-the-art sensitivity of field-effect transistors and microwave sensors for the identification of single-base mismatches.


Biosensing Techniques , Graphite , Graphite/chemistry , Microwaves , Biosensing Techniques/methods , DNA Probes/chemistry , Signal-To-Noise Ratio
9.
Clin Teach ; 20(4): e13605, 2023 08.
Article En | MEDLINE | ID: mdl-37503773

Clinical education research (ClinEdR) utilises diverse terminology, which can lead to confusion. A common language is essential for enhancing impact. An expert panel drawn from various workstreams within the National Institute for Health and Care Research (NIHR) Incubator for Clinical Education Research was tasked with reviewing an initial list of terms for the development of a glossary of terms in the field of ClinEdR. The glossary was populated with terms, definitions and foundational papers by the authors and peer-reviewed for accuracy. The glossary of terms developed for ClinEdR should enable researchers to use a common language, promoting consistency and improving communication. We anticipate this will be useful for ClinEdR students and early career researchers. The glossary could be integrated into educational research methods courses in ClinEdR, and through critical and reflective use, enhance the quality and subsequent impact of ClinEdR.


Education, Medical , Terminology as Topic
10.
Nano Lett ; 23(12): 5506-5513, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37289669

Twisted bilayer graphene provides an ideal solid-state model to explore correlated material properties and opportunities for a variety of optoelectronic applications, but reliable, fast characterization of the twist angle remains a challenge. Here we introduce spectroscopic ellipsometric contrast microscopy (SECM) as a tool for mapping twist angle disorder in optically resonant twisted bilayer graphene. We optimize the ellipsometric angles to enhance the image contrast based on measured and calculated reflection coefficients of incident light. The optical resonances associated with van Hove singularities correlate well to Raman and angle-resolved photoelectron emission spectroscopy, confirming the accuracy of SECM. The results highlight the advantages of SECM, which proves to be a fast, nondestructive method for characterization of twisted bilayer graphene over large areas, unlocking process, material, and device screening and cross-correlative measurement potential for bilayer and multilayer materials.

11.
Eur J Immunol ; 53(10): e2250270, 2023 10.
Article En | MEDLINE | ID: mdl-37366299

Mucosal barrier integrity and pathogen clearance is a complex process influenced by both Th17 and Treg cells. Previously, we had described the DNA methylation profile of Th17 cells and identified Zinc finger protein (Zfp)362 to be uniquely demethylated. Here, we generated Zfp362-/- mice to unravel the role of Zfp362 for Th17 cell biology. Zfp362-/- mice appeared clinically normal, showed no phenotypic alterations in the T-cell compartment, and upon colonization with segmented filamentous bacteria, no effect of Zfp362 deficiency on Th17 cell differentiation was observed. By contrast, Zfp362 deletion resulted in increased frequencies of colonic Foxp3+ Treg cells and IL-10+ and RORγt+ Treg cell subsets in mesenteric lymph nodes. Adoptive transfer of naïve CD4+ T cells from Zfp362-/- mice into Rag2-/- mice resulted in a significantly lower weight loss when compared with controls receiving cells from Zfp362+/+ littermates. However, this attenuated weight loss did not correlate with alterations of Th17 cells but instead was associated with an increase of effector Treg cells in mesenteric lymph nodes. Together, these results suggest that Zfp362 plays an important role in promoting colonic inflammation; however, this function is derived from constraining the effector function of Treg cells rather than directly promoting Th17 cell differentiation.


T-Lymphocytes, Regulatory , Th17 Cells , Mice , Animals , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Cell Differentiation , Inflammation/metabolism , Weight Loss , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
12.
Cancers (Basel) ; 15(7)2023 Apr 06.
Article En | MEDLINE | ID: mdl-37046847

There is a lack of cheap and effective biomarkers for the prediction of renal cancer outcomes post-image-guided ablation. This is a retrospective study of patients with localised small renal cell cancer (T1a or T1b) undergoing cryoablation or radiofrequency ablation (RFA) at our institution from 2003 to 2016. A total of 203 patients were included in the analysis. In the multivariable analysis, patients with raised neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) pre-operatively, post-operatively and peri-operatively are associated with significantly worsened cancer-specific survival, overall survival and metastasis-free survival. Furthermore, an increased PLR pre-operatively is also associated with increased odds of a larger than 25% drop in renal function post-operatively. In conclusion, NLR and PLR are effective prognostic factors in predicting oncological outcomes and peri-operative outcomes; however, larger external datasets should be used to validate the findings prior to clinical application.

13.
Cell Rep Methods ; 3(1): 100390, 2023 01 23.
Article En | MEDLINE | ID: mdl-36814837

The advent of high-dimensional single-cell data has necessitated the development of dimensionality-reduction tools. t-Distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are the two most frequently used approaches, allowing clear visualization of complex single-cell datasets. Despite the need for quantitative comparison, t-SNE and UMAP have largely remained visualization tools due to the lack of robust statistical approaches. Here, we have derived a statistical test for evaluating the difference between dimensionality-reduced datasets using the Kolmogorov-Smirnov test on the distributions of cross entropy of single cells within each dataset. As the approach uses the inter-relationship of single cells for comparison, the resulting statistic is robust and capable of identifying true biological variation. Further, the test provides a valid distance between single-cell datasets, allowing the organization of multiple samples into a dendrogram for quantitative comparison of complex datasets. These results demonstrate the largely untapped potential of dimensionality-reduction tools for biomedical data analysis beyond visualization.


Algorithms , Entropy , Principal Component Analysis , Correlation of Data
15.
ACS Nano ; 2023 Jan 03.
Article En | MEDLINE | ID: mdl-36594782

Reliable, clean transfer and interfacing of 2D material layers are technologically as important as their growth. Bringing both together remains a challenge due to the vast, interconnected parameter space. We introduce a fast-screening descriptor approach to demonstrate holistic data-driven optimization across the entirety of process steps for the graphene-Cu model system. We map the crystallographic dependences of graphene chemical vapor deposition, interfacial Cu oxidation to decouple graphene, and its dry delamination across inverse pole figures. Their overlay enables us to identify hitherto unexplored (168) higher index Cu orientations as overall optimal orientations. We show the effective preparation of such Cu orientations via epitaxial close-space sublimation and achieve mechanical transfer with a very high yield (>95%) and quality of graphene domains, with room-temperature electron mobilities in the range of 40000 cm2/(V s). Our approach is readily adaptable to other descriptors and 2D material systems, and we discuss the opportunities of such a holistic optimization.

17.
Curr Protoc ; 2(11): e589, 2022 Nov.
Article En | MEDLINE | ID: mdl-36373983

Recent advances in flow cytometry have allowed high-dimensional characterization of biological phenomena, enabling breakthroughs in a multitude of fields. Despite the appreciation of the unique properties of antigens and fluorophores in high-parameter panel design, staining conditions are often standardized for short surface stains, regardless of antibody affinity or antigen accessibility. Here, we demonstrate how increasing antibody incubation times can lead to substantial improvements in sensitivity, maintaining specificity, and reducing background, while also significantly reducing the costs of high-parameter cytometry panels. Furthermore, overnight staining reduces the influence of interexperimental variability, assisting accurate pooling over experiments over extended time courses. We provide guidance on how to optimize staining conditions for diverse antigens, including how different fixation strategies can affect epitope accessibility. Overnight staining can thus substantially improve the resolution, repeatability, and cost-effectiveness of high-parameter cytometry. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.


Antibodies , Antigens , Flow Cytometry/methods , Staining and Labeling , Fluorescent Dyes
18.
ACS Nano ; 16(11): 18009-18017, 2022 Nov 22.
Article En | MEDLINE | ID: mdl-36162100

We present a high-throughput method for identifying and characterizing individual nanowires and for automatically designing electrode patterns with high alignment accuracy. Central to our method is an optimized machine-readable, lithographically processable, and multi-scale fiducial marker system─dubbed LithoTag─which provides nanostructure position determination at the nanometer scale. A grid of uniquely defined LithoTag markers patterned across a substrate enables image alignment and mapping in 100% of a set of >9000 scanning electron microscopy (SEM) images (>7 gigapixels). Combining this automated SEM imaging with a computer vision algorithm yields location and property data for individual nanowires. Starting with a random arrangement of individual InAs nanowires with diameters of 30 ± 5 nm on a single chip, we automatically design and fabricate >200 single-nanowire devices. For >75% of devices, the positioning accuracy of the fabricated electrodes is within 2 pixels of the original microscopy image resolution. The presented LithoTag method enables automation of nanodevice processing and is agnostic to microscopy modality and nanostructure type. Such high-throughput experimental methodology coupled with data-extensive science can help overcome the characterization bottleneck and improve the yield of nanodevice fabrication, driving the development and applications of nanostructured materials.

19.
Nanotechnology ; 33(48)2022 Sep 08.
Article En | MEDLINE | ID: mdl-35977453

Remote epitaxy is an emerging materials synthesis technique which employs a 2D interface layer, often graphene, to enable the epitaxial deposition of low defect single crystal films while restricting bonding between the growth layer and the underlying substrate. This allows for the subsequent release of the epitaxial film for integration with other systems and reuse of growth substrates. This approach is applicable to material systems with an ionic component to their bonding, making it notably appealing for III-V alloys, which are a technologically important family of materials. Chemical vapour deposition growth of graphene and wet transfer to a III-V substrate with a polymer handle is a potentially scalable and low cost approach to producing the required growth surface for remote epitaxy of these materials, however, the presence of water promotes the formation of a III-V oxide layer, which degrades the quality of subsequently grown epitaxial films. This work demonstrates the use of an argon ion beam for the controlled introduction of defects in a monolayer graphene interface layer to enable the growth of a single crystal GaAs film by molecular beam epitaxy, despite the presence of a native oxide at the substrate/graphene interface. A hybrid mechanism of defect seeded lateral overgrowth with remote epitaxy contributing the coalescence of the film is indicated. The exfoliation of the GaAs films reveals the presence of defect seeded nucleation sites, highlighting the need to balance the benefits of defect seeding on crystal quality against the requirement for subsequent exfoliation of the film, for future large area development of this approach.

20.
Front Immunol ; 13: 881655, 2022.
Article En | MEDLINE | ID: mdl-35865546

Mast cells and basophils have long been implicated in the pathogenesis of IgE-mediated hypersensitivity reactions. They express the high-affinity IgE receptor, FcϵRI, on their surface. Antigen-induced crosslinking of IgE antibodies bound to that receptor triggers a signaling cascade that results in activation, leading to the release of an array of preformed vasoactive mediators and rapidly synthesized lipids, as well as the de novo production of inflammatory cytokines. In addition to bearing activating receptors like FcεRI, these effector cells of allergy express inhibitory ones including FcγR2b, an IgG Fc receptor with a cytosolic inhibitory motif that activates protein tyrosine phosphatases that suppress IgE-mediated activation. We and others have shown that food allergen-specific IgG antibodies strongly induced during the course of oral immunotherapy (OIT), signal via FcγR2b to suppress IgE-mediated mast cell and basophil activation triggered by food allergen challenge. However, the potential inhibitory effects of IgA antibodies, which are also produced in response to OIT and are present at high levels at mucosal sites, including the intestine where food allergens are encountered, have not been well studied. Here we uncover an inhibitory function for IgA. We observe that IgA binds mouse bone marrow-derived mast cells (BMMCs) and peritoneal mast cells. Binding to BMMCs is dependent on calcium and sialic acid. We also found that IgA antibodies inhibit IgE-mediated mast cell degranulation in an allergen-specific fashion. Antigen-specific IgA inhibits IgE-mediated mast cell activation early in the signaling cascade, suppressing the phosphorylation of Syk, the proximal protein kinase mediating FcεRI signaling, and suppresses mast cell production of cytokines. Furthermore, using basophils from a peanut allergic donor we found that IgA binds to basophils and that activation by exposure to peanuts is effectively suppressed by IgA. We conclude that IgA serves as a regulator of mast cell and basophil degranulation, suggesting a physiologic role for IgA in the maintenance of immune homeostasis at mucosal sites.


Basophils , Food Hypersensitivity , Allergens , Animals , Arachis , Cytokines/metabolism , Food Hypersensitivity/metabolism , Immunoglobulin A/metabolism , Immunoglobulin E , Immunoglobulin G , Mast Cells , Mice , Receptors, IgE/metabolism , Receptors, IgG/metabolism
...