Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Article En | MEDLINE | ID: mdl-37558929

We have previously published a PBPK model comprising the ocular compartment to characterize the disposition of monoclonal antibodies (mAbs) in rabbits. While rabbits are commonly used preclinical species in ocular research, non-human primates (NHPs) have the most phylogenetic resemblance to humans including the presence of macula in the eyes as well as higher sequence homology. However, their use in ocular research is limited due to the strict ethical guidelines. Similarly, in humans the ocular samples cannot be collected except for the tapping of aqueous humor (AH). Therefore, we have translated this rabbit model to monkeys and human species using literature-reported datasets. Parameters describing the tissue volumes, physiological flows, and FcRn-binding were obtained from the literature, or estimated by fitting the model to the data. In the monkey model, the values for the rate of lysosomal degradation for antibodies (Kdeg), intraocular reflection coefficients (σaq, σret, σcho), bidirectional rate of fluid circulation between the vitreous chamber and the aqueous chamber (QVA), and permeability-surface area product of lens (PSlens) were estimated; and were found to be 31.5 h-1, 0.7629, 0.6982, 0.9999, 1.64 × 10-5 L/h, and 4.62 × 10-7 L/h, respectively. The monkey model could capture the data in plasma, aqueous humor, vitreous humor and retina reasonably well with the predictions being within twofold of the observed values. For the human model, only the value of Kdeg was estimated to fit the model to the plasma pharmacokinetics (PK) of mAbs and was found to be 24.4 h-1 (4.14%). The human model could also capture the ocular PK data reasonably well with the predictions being within two- to threefold of observed values for the plasma, aqueous and vitreous humor. Thus, the proposed framework can be used to characterize and predict the PK of mAbs in the eye of monkey and human species following systemic and intravitreal administration. The model can also facilitate the development of new antibody-based therapeutics for the treatment of ocular diseases as well as predict ocular toxicities of such molecules following systemic administration.

2.
J Pharm Sci ; 112(8): 2276-2284, 2023 08.
Article En | MEDLINE | ID: mdl-37062415

Mice are rarely used in pharmacokinetic (PK) studies of ocular therapeutics due to the small size of their eyes and challenges in drug administration, tissue collection, and analysis of drug concentrations. Therefore, ocular PK of protein therapeutics in mouse eye following intravitreal (IVT) administration is not known. Here, we have presented the first of its kind investigation, to study the PK of 4 different size non-binding protein therapeutics in mouse plasma, cornea/ICB, vitreous humor, retina, and posterior cup (including choroid) following IVT administration. Administered proteins include trastuzumab (150 kDa) and F(ab)2 (100 kDa), Fab, and scFv (27 kDa) fragments of trastuzumab. An imaging and injection apparatus suitable for performing small (50 nL) IVT injections in mice was developed, and techniques for enucleation of the eye and dissection of ocular tissues were developed. Furthermore, a sensitive enzyme-linked immunosorbent assay (ELISA) for detection of proteins in very small amounts of ocular tissues were developed. It was observed that elimination from the vitreous chamber was the primary driver of PK in the cornea/ICB, retina, posterior cup, and plasma. Trastuzumab displays first-order kinetics in the vitreous humor with a half-life of 18.8 h. F(ab)2, Fab, and ScFv show biphasic PK profiles with distribution phases becoming more rapid as molecular weight decreases, and terminal elimination becoming longer as molecular weight decreases, with terminal half-lives of 16.3, 20.6, and 48.9 h, respectively. The mean residence times of trastuzumab, F(ab)2, Fab, and scFv in the vitreous humor were 26.0, 12.2, 10.7, and 8.16 h, respectively. It was found that the mean residence time in vitreous humor doubles with an increase in molecular weight of ∼69 kDa. Interestingly, the PK of proteins measured in the un-injected eye suggest the presence of a pathway for drug transfer between the eyes, which needs to be further validated. Overall, the findings presented here pave the way for drug discovery and development studies of protein therapeutics for ophthalmic indications in mice.


Antibodies, Monoclonal , Eye , Mice , Animals , Antibodies, Monoclonal/metabolism , Intravitreal Injections , Eye/metabolism , Vitreous Body/metabolism , Trastuzumab , Immunoglobulin Fragments/metabolism
3.
AAPS J ; 23(6): 116, 2021 11 08.
Article En | MEDLINE | ID: mdl-34750690

The ocular pharmacokinetics (PK) of antibody-based therapies are infrequently studied in mice due to the technical difficulties in working with the small murine eye. This study is the first of its kind to quantitatively measure the PK of variously sized proteins in the plasma, cornea/ICB, vitreous humor, retina, and posterior cup (including choroid) of the mouse and to evaluate the relationship between molecular weight (MW) and antibody biodistribution coefficient (BC) to the eye. Proteins analyzed include trastuzumab (150 kDa), trastuzumab-vc-MMAE (T-vc-MMAE, 155 kDa), F(ab)2 (100 kDa), Fab (50 kDa), and scFv (27 kDa). As expected, ocular PK mirrored the systemic PK as plasma was the driving force for ocular exposure. For trastuzumab, T-vc-MMAE, F(ab)2, Fab, and scFv, respectively, the BCs in the cornea/ICB were 0.610%, 0.475%, 1.74%, 3.39%, and 13.7%; the BCs in the vitreous humor were 0.0198%, 0.0427%, 0.0934%, 0.234%, and 5.56%; the BCs for the retina were 0.539%, 0.230%, 0.704%, 2.44%, and 20.4%; the BCs for the posterior cup were 0.557%, 0.650%, 1.47%, 4.06%, and 13.9%. The relationship between BC and MW was best characterized by a log-log regression in which BC decreased as MW increased, with every doubling in MW leading to a decrease in BC by a factor of 3.44 × , 6.76 × , 4.74 × , and 3.43 × in cornea/ICB, vitreous humor, retina, and posterior cup, respectively. In analyzing the disposition of protein therapeutics to the eye, these findings enhance our understanding of the potential for ocular toxicity of systemically administered protein therapeutics and may aid in the discovery of systemically administered protein therapeutics for ocular disorders.


Eye/metabolism , Immunoconjugates/pharmacokinetics , Immunoglobulin Fab Fragments/metabolism , Oligopeptides/pharmacokinetics , Trastuzumab/pharmacokinetics , Animals , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Immunoglobulin Fab Fragments/administration & dosage , Immunoglobulin Fragments/administration & dosage , Immunoglobulin Fragments/metabolism , Mice , Mice, Inbred C57BL , Mice, Nude , Molecular Weight , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Tissue Distribution , Trastuzumab/administration & dosage , Trastuzumab/chemistry
4.
AAPS J ; 23(3): 56, 2021 04 15.
Article En | MEDLINE | ID: mdl-33856579

Antibody-drug conjugates (ADCs) rely on high expression of target antigens on cancer cells to effectively enter the cell and release a cytotoxic payload. Previous studies have shown that ADC efficacy is not always tied to antigen expression. However, our recent in vitro study suggests a linear relationship between antigen expression and the intracellular levels of the ADC payload. In this study, we have explored the relationship between antigen expression and intratumoral ADC exposure in vivo. Using trastuzumab-vc-MMAE (T-vc-MMAE) and four cell lines with varying expression of human epithelial growth factor receptor 2 (HER2), the pharmacokinetics of total trastuzumab, released ("free") MMAE, and total MMAE were evaluated in a tumor xenograft model. Nude mice were implanted with tumors originating from BT-474, MDA-MB-453, MCF-7, and MDA-MB-468 cell lines and dosed with 10 mg/kg or 1 mg/kg of ADC. Observed data were mathematically characterized using a mechanism-based PK model. A strong positive correlation was observed between antigen expression levels and free/total MMAE exposure (R2 ≥ 0.91) (total MMAE being the sum of released and conjugated MMAE) within the tumor, but not for total trastuzumab exposure. The PK model was able to recapitulate plasma PK through simulation; however, the tumor PK was overpredicted or underpredicted in some cases potentially due to differences in tumor vasculature or extracellular matrix conditions. Our results indicate a linear relationship between antigen expression and tumor exposure of free/total ADC payload in vivo, validating our previous finding in vitro, while also revealing the need to understand complex physiology of the tumor to predict tumor PK of ADC and its components. Our findings also support the concept of antigen expression screening in patients for targeted therapies like ADCs to achieve the maximum therapeutic benefit of the treatment.


Antigens, Neoplasm/metabolism , Antineoplastic Agents, Immunological/pharmacokinetics , Immunoconjugates/pharmacokinetics , Neoplasms/drug therapy , Oligopeptides/pharmacokinetics , Trastuzumab/pharmacokinetics , Animals , Antineoplastic Agents, Immunological/administration & dosage , Bystander Effect/immunology , Cell Line, Tumor , Humans , Immunoconjugates/administration & dosage , Mice , Models, Biological , Neoplasms/immunology , Neoplasms/pathology , Oligopeptides/administration & dosage , Receptor, ErbB-2/metabolism , Tissue Distribution , Trastuzumab/administration & dosage , Xenograft Model Antitumor Assays
5.
J Pharmacokinet Pharmacodyn ; 47(6): 597-612, 2020 12.
Article En | MEDLINE | ID: mdl-32876799

Development of protein therapeutics for ocular disorders, particularly age-related macular degeneration (AMD), is a highly competitive and expanding therapeutic area. However, the application of a predictive and translatable ocular PK model to better understand ocular disposition of protein therapeutics, such as a physiologically-based pharmacokinetic (PBPK) model, is missing from the literature. Here, we present an expansion of an antibody platform PBPK model towards rabbit and incorporate a novel anatomical and physiologically relevant ocular component. Parameters describing all tissues, flows, and binding events were obtained from existing literature and fixed a priori. First, translation of the platform PBPK model to rabbit was confirmed by evaluating the model's ability to predict plasma PK of a systemically administered exogenous antibody. Then, the PBPK model with the new ocular component was validated by estimation of serum and ocular (i.e. aqueous humor, retina, and vitreous humor) PK of two intravitreally administered monoclonal antibodies. We show that the proposed PBPK model is capable of accurately (i.e. within twofold) predicting ocular exposure of antibody-based drugs. The proposed PBPK model can be used for preclinical-to-clinical translation of antibodies developed for ocular disorders, and assessment of ocular toxicity for systemically administered antibody-based therapeutics.


Antibodies, Monoclonal/pharmacokinetics , Eye/metabolism , Models, Biological , Animals , Antibodies, Monoclonal/administration & dosage , Antitoxins/administration & dosage , Antitoxins/pharmacology , Diabetic Retinopathy/drug therapy , Humans , Immunoglobulin G/pharmacology , Injections, Intravenous , Intravitreal Injections , Macular Degeneration/drug therapy , Models, Animal , Rabbits , Tissue Distribution
6.
Drug Metab Dispos ; 48(5): 368-377, 2020 05.
Article En | MEDLINE | ID: mdl-32086295

Antibody-drug conjugates (ADCs) employ overexpressed cell surface antigens to deliver cytotoxic payloads inside cancer cells. However, the relationship between target expression and ADC efficacy remains ambiguous. In this manuscript, we have addressed a part of this ambiguity by quantitatively investigating the effect of antigen expression levels on ADC exposure within cancer cells. Trastuzumab-valine-citrulline-monomethyl auristatin E was used as a model ADC, and four different cell lines with diverse levels of human epidermal growth factor receptor 2 (HER2) expression were used as model cells. The pharmacokinetics (PK) of total trastuzumab, released monomethyl auristatin E (MMAE), and total MMAE were measured inside the cells and in the cell culture media following incubation with two different concentrations of ADC. In addition, target expression levels, target internalization rate, and cathepsin B and MDR1 protein concentrations were determined for each cell line. All the PK data were mathematically characterized using a cell-level systems PK model for ADC. It was found that SKBR-3, MDA-MB-453, MCF-7, and MDA-MB-468 cells had ∼800,000, ∼250,000, ∼50,000, and ∼10,000 HER2 receptors per cell, respectively. A strong linear relationship (R 2 > 0.9) was observed between HER2 receptor count and released MMAE exposure inside the cancer cells. There was an inverse relationship found between HER2 expression level and internalization rate, and cathepsin B and multidrug resistance protein 1 (MDR1) expression level varied slightly among the cell lines. The PK model was able to simultaneously capture all the PK profiles reasonably well while estimating only two parameters. Our results demonstrate a strong quantitative relationship between antigen expression level and intracellular exposure of ADCs in cancer cells. SIGNIFICANCE STATEMENT: In this manuscript, we have demonstrated a strong linear relationship between target expression level and antibody-drug conjugate (ADC) exposure inside cancer cells. We have also shown that this relationship can be accurately captured using the cell-level systems pharmacokinetics model developed for ADCs. Our results indirectly suggest that the lack of relationship between target expression and efficacy of ADC may stem from differences in the pharmacodynamic properties of cancer cells.


Antineoplastic Agents, Immunological/pharmacokinetics , Immunoconjugates/pharmacokinetics , Neoplasms/drug therapy , Oligopeptides/pharmacokinetics , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B/analysis , ATP Binding Cassette Transporter, Subfamily B/metabolism , Antineoplastic Agents, Immunological/analysis , Antineoplastic Agents, Immunological/therapeutic use , Cathepsin B/analysis , Cathepsin B/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Immunoconjugates/analysis , Immunoconjugates/therapeutic use , Models, Biological , Neoplasms/immunology , Neoplasms/pathology , Oligopeptides/analysis , Oligopeptides/therapeutic use , Receptor, ErbB-2/analysis , Receptor, ErbB-2/antagonists & inhibitors , Trastuzumab/analysis , Trastuzumab/therapeutic use
...