Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
Hum Genomics ; 18(1): 93, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218908

RESUMEN

BACKGROUND: Polygenic risk scores (PRS) derived from European individuals have reduced portability across global populations, limiting their clinical implementation at worldwide scale. Here, we investigate the performance of a wide range of PRS models across four ancestry groups (Africans, Europeans, East Asians, and South Asians) for 14 conditions of high-medical interest. METHODS: To select the best-performing model per trait, we first compared PRS performances for publicly available scores, and constructed new models using different methods (LDpred2, PRS-CSx and SNPnet). We used 285 K European individuals from the UK Biobank (UKBB) for training and 18 K, including diverse ancestries, for testing. We then evaluated PRS portability for the best models in Europeans and compared their accuracies with respect to the best PRS per ancestry. Finally, we validated the selected PRS models using an independent set of 8,417 individuals from Biobank of the Americas-Genomelink (BbofA-GL); and performed a PRS-Phewas. RESULTS: We confirmed a decay in PRS performances relative to Europeans when the evaluation was conducted using the best-PRS model for Europeans (51.3% for South Asians, 46.6% for East Asians and 39.4% for Africans). We observed an improvement in the PRS performances when specifically selecting ancestry specific PRS models (phenotype variance increase: 1.62 for Africans, 1.40 for South Asians and 0.96 for East Asians). Additionally, when we selected the optimal model conditional on ancestry for CAD, HDL-C and LDL-C, hypertension, hypothyroidism and T2D, PRS performance for studied populations was more comparable to what was observed in Europeans. Finally, we were able to independently validate tested models for Europeans, and conducted a PRS-Phewas, identifying cross-trait interplay between cardiometabolic conditions, and between immune-mediated components. CONCLUSION: Our work comprehensively evaluated PRS accuracy across a wide range of phenotypes, reducing the uncertainty with respect to which PRS model to choose and in which ancestry group. This evaluation has let us identify specific conditions where implementing risk-prioritization strategies could have practical utility across diverse ancestral groups, contributing to democratizing the implementation of PRS.


Asunto(s)
Predisposición Genética a la Enfermedad , Puntuación de Riesgo Genético , Femenino , Humanos , Pueblo Asiatico/genética , Estudio de Asociación del Genoma Completo , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Población Negra/genética
2.
Front Integr Neurosci ; 18: 1417856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070159

RESUMEN

The SARS-CoV-2 pandemic has affected 771 million people and caused 6.9 million confirmed deaths as of November 2023. Beyond the adversity, a crucial and less-explored chapter unfolds: adaptive sequelae. These have altered social, mental, and emotional conditions, leaving an imprint on biological systems. While some cases fully resolve the pathological process post-acute infection, others persist with symptoms, posing a challenge that underscores the need to comprehend pathophysiology from innovative perspectives. The article delves into "Long COVID" or Post-Acute COVID-19 Syndrome (PACS), where symptoms persist for ≥4 weeks irrespective of initial severity. Risk factors include a history of severe illness, in-hospital management, and intensive care. This article also explores theories, derived from various experimental models, that have demonstrated the involvement of the nervous system in coordination with the psychoneuroimmunoendocrine axes in the expression of inflammation. It is posited that PACS involves processes of peripheral and central sensitization (corticalization), facilitating dishomeostasis and the chronicity of the inflammatory process. In this context, various therapeutic strategies grounded in modulating the inflammatory reflex are reviewed, primarily through the infiltration of local anesthetics via linear and non-linear approaches. Neural therapeutic use is considered to stimulate the regulatory inflammatory circuits coordinated by the neuroimmune-endocrine system.

3.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38828814

RESUMEN

Static and time-dependent quantum-mechanical approaches have been employed in the literature to characterize the physics of light-emitting molecules and nanostructures. However, the electromagnetic emission induced by an input current has remained beyond the realm of molecular simulations. This is the challenge addressed here with the help of an equation of motion for the density matrix coupled to a photon bath based on a Redfield formulation. This equation is evolved within the framework of the driven-Liouville von Neumann approach, which incorporates open boundaries by introducing an applied bias and a circulating current. The dissipated electromagnetic power can be computed in this context from the time derivative of the energy. This scheme is applied in combination with a self-consistent tight-binding Hamiltonian to investigate the effects of bias and molecular size on the electroluminescence of metallic and semiconducting chains. For the latter, a complex interplay between bias and molecular length is observed: there is an optimal number of atoms that maximizes the emitted power at high voltages but not at low ones. This unanticipated behavior can be understood in terms of the band bending produced along the semiconducting chain, a phenomenon that is captured by the self-consistency of the method. A simple analytical model is proposed that explains the main features revealed by the simulations. The methodology, applied here at a self-consistent tight-binding level but extendable to more sophisticated Hamiltonians such as density functional tight binding and time dependent density functional theory, promises to be helpful for quantifying the power and quantum efficiency of nanoscale electroluminescent devices.

4.
Animals (Basel) ; 14(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891621

RESUMEN

The advances in Assisted Reproductive Technologies (ARTs) applied in South American camelid species are still scarce. The aim of this study was to compare the effects of three semen extenders, before and after the cryopreservation of spermatozoa obtained from the vas deferens, on sperm quality parameters and in vitro fertilization rates of llama (Lama glama) oocytes. Mature fertile llama males (Lama glama; n = 6; age: 48-60 mo.; BCS: ~2.7) were included in the study. Sperm samples were collected from each male using the surgical technique of the vas deferens deviation. Then, the sperm samples were pooled and diluted with the Tris-EY, Andromed®, or BioxCell® extender in order to subsequently carry out the sperm cryopreservation process. The sperm quality assessment related to each extender was performed before and after cryopreservation with regard to sperm morphological abnormalities, acrosome integrity, sperm viability, membrane permeability, and sperm motility traits. Moreover, in vitro fertilization (IVF) procedures were carried out to evaluate the in vitro fertility of the cryopreserved sperm samples using each extender. Overall, significant differences were observed before and after cryopreservation regarding acrosome integrity, sperm viability, membrane permeability, and sperm motility traits among the extenders used, where Tris-EY and Andromed® were better than BioxCell® (p < 0.05); however, no differences were observed regarding the sperm morphological abnormalities among extenders (p > 0.05). Moreover, multiple differences were observed with regard to the velocity and linearity kinematic parameters obtained by computerized analysis before and after the cryopreservation process, irrespective of the extender used (p < 0.05). Finally, differences were observed regarding the in vitro fertilization rates among the different extender-derived samples (p < 0.05). In conclusion, the sperm quality using Tris-EY and Andromed® was better before and after cryopreservation compared to that using BioxCell®. Although the number of fertilized oocytes obtained after the IVF process between Tris-EY and Andromed® was similar, Andromed®-derived samples showed the best sperm quality results before and after cryopreservation. This indicates that the cryopreservation extender is a determining factor in significantly improving in vitro fertilization rates when using sperm samples obtained from vas deferens in llama (Lama glama) males.

5.
Nat Commun ; 15(1): 4395, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782894

RESUMEN

The conformational dynamics of nucleosome arrays generate a diverse spectrum of microscopic states, posing challenges to their structural determination. Leveraging cryogenic electron tomography (cryo-ET), we determine the three-dimensional (3D) structures of individual mononucleosomes and arrays comprising di-, tri-, and tetranucleosomes. By slowing the rate of condensation through a reduction in ionic strength, we probe the intra-array structural transitions that precede inter-array interactions and liquid droplet formation. Under these conditions, the arrays exhibite irregular zig-zag conformations with loose packing. Increasing the ionic strength promoted intra-array compaction, yet we do not observe the previously reported regular 30-nanometer fibers. Interestingly, the presence of H1 do not induce array compaction; instead, one-third of the arrays display nucleosomes invaded by foreign DNA, suggesting an alternative role for H1 in chromatin network construction. We also find that the crucial parameter determining the structure adopted by chromatin arrays is the angle between the entry and exit of the DNA and the corresponding tangents to the nucleosomal disc. Our results provide insights into the initial stages of intra-array compaction, a critical precursor to condensation in the regulation of chromatin organization.


Asunto(s)
ADN , Tomografía con Microscopio Electrónico , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Nucleosomas/química , Tomografía con Microscopio Electrónico/métodos , ADN/química , ADN/metabolismo , Microscopía por Crioelectrón/métodos , Conformación de Ácido Nucleico , Cromatina/química , Cromatina/ultraestructura , Cromatina/metabolismo , Histonas/metabolismo , Histonas/química , Concentración Osmolar , Animales
6.
mBio ; 15(2): e0326023, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38236026

RESUMEN

Bacteriophages are large and diverse components of the biosphere, and many phages are temperate. Upon infection, temperate phages can establish lysogeny in which a prophage is typically integrated into the bacterial chromosome. Here, we describe the phenomenon of tRNA-dependent lysogeny, a previously unrecognized behavior of some temperate phages. tRNA-dependent lysogeny is characterized by two unusual features. First, a phage-encoded tyrosine family integrase mediates site-specific recombination between a phage attP site and a bacterial attB site overlapping a host tRNA gene. However, attP and attB share only a short (~10 bp) common core such that a functional tRNA is not reconstructed upon integration. Second, the phage encodes a tRNA of the same isotype as the disrupted but essential host tRNA, complementing its loss, and consequently is required for the survival of lysogenic progeny. As expected, an integrase-defective phage mutant forms turbid plaques, and bacterial progeny are immune to superinfection, but they lack stability, and the prophage is rapidly lost. In contrast, a tRNA-defective phage mutant forms clear plaques and more closely resembles a repressor mutant, and lysogens are recovered only at very low frequency through the use of secondary attachment sites elsewhere in the host genome. Integration-proficient plasmids derived from these phages must also carry a cognate phage tRNA gene for efficient integration, and these may be useful tools for mycobacterial genetics. We show that tRNA-dependent lysogeny is used by phages within multiple different groups of related viruses and may be prevalent elsewhere in the broader phage community.IMPORTANCEBacteriophages are the most numerous biological entities in the biosphere, and a substantial proportion of phages are temperate, forming stable lysogens in which a prophage copy of the genome integrates into the bacterial chromosome. Many phages encode a variety of tRNA genes whose roles are poorly understood, although it has been proposed that they enhance translational efficiencies in lytic growth or that they counteract host defenses that degrade host tRNAs. Here, we show that phage-encoded tRNAs play key roles in the establishment of lysogeny of some temperate phages. They do so by compensating for the loss of tRNA function when phages integrate at an attB site overlapping a tRNA gene but fail to reconstruct the tRNA at the attachment junction. In this system of tRNA-dependent lysogeny, the phage-encoded tRNA is required for lysogeny, and deletion of the phage tRNA gives rise to a clear plaque phenotype and obligate lytic growth.


Asunto(s)
Bacteriófagos , Lisogenia , Lisogenia/genética , Bacteriófagos/genética , Profagos/genética , Integrasas/genética , Plásmidos
7.
ACS Cent Sci ; 10(1): 122-137, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38292612

RESUMEN

During replication, expression, and repair of the eukaryotic genome, cellular machinery must access the DNA wrapped around histone proteins forming nucleosomes. These octameric protein·DNA complexes are modular, dynamic, and flexible and unwrap or disassemble either spontaneously or by the action of molecular motors. Thus, the mechanism of formation and regulation of subnucleosomal intermediates has gained attention genome-wide because it controls DNA accessibility. Here, we imaged nucleosomes and their more compacted structure with the linker histone H1 (chromatosomes) using high-speed atomic force microscopy to visualize simultaneously the changes in the DNA and the histone core during their disassembly when deposited on mica. Furthermore, we trained a neural network and developed an automatic algorithm to track molecular structural changes in real time. Our results show that nucleosome disassembly is a sequential process involving asymmetrical stepwise dimer ejection events. The presence of H1 restricts DNA unwrapping, significantly increases the nucleosomal lifetime, and affects the pathway in which heterodimer asymmetrical dissociation occurs. We observe that tetrasomes are resilient to disassembly and that the tetramer core (H3·H4)2 can diffuse along the nucleosome positioning sequence. Tetrasome mobility might be critical to the proper assembly of nucleosomes and can be relevant during nucleosomal transcription, as tetrasomes survive RNA polymerase passage. These findings are relevant to understanding nucleosome intrinsic dynamics and their modification by DNA-processing enzymes.

8.
Nat Commun ; 14(1): 6802, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935687

RESUMEN

European-ancestry populations are recognized as stratified but not as admixed, implying that residual confounding by locus-specific ancestry can affect studies of association, polygenic adaptation, and polygenic risk scores. We integrate individual-level genome-wide data from ~19,000 European-ancestry individuals across 79 European populations and five European American cohorts. We generate a new reference panel that captures ancestral diversity missed by both the 1000 Genomes and Human Genome Diversity Projects. Both Europeans and European Americans are admixed at the subcontinental level, with admixture dates differing among subgroups of European Americans. After adjustment for both genome-wide and locus-specific ancestry, associations between a highly differentiated variant in LCT (rs4988235) and height or LDL-cholesterol were confirmed to be false positives whereas the association between LCT and body mass index was genuine. We provide formal evidence of subcontinental admixture in individuals with European ancestry, which, if not properly accounted for, can produce spurious results in genetic epidemiology studies.


Asunto(s)
Pueblo Europeo , Genética de Población , Humanos , Pueblo Europeo/genética , Epidemiología Molecular
10.
Nat Commun ; 14(1): 4641, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582830

RESUMEN

The indigenous population of the Canary Islands, which colonized the archipelago around the 3rd century CE, provides both a window into the past of North Africa and a unique model to explore the effects of insularity. We generate genome-wide data from 40 individuals from the seven islands, dated between the 3rd-16rd centuries CE. Along with components already present in Moroccan Neolithic populations, the Canarian natives show signatures related to Bronze Age expansions in Eurasia and trans-Saharan migrations. The lack of gene flow between islands and constant or decreasing effective population sizes suggest that populations were isolated. While some island populations maintained relatively high genetic diversity, with the only detected bottleneck coinciding with the colonization time, other islands with fewer natural resources show the effects of insularity and isolation. Finally, consistent genetic differentiation between eastern and western islands points to a more complex colonization process than previously thought.


Asunto(s)
Flujo Genético , Genómica , Humanos , España , África del Norte , Pueblos Indígenas , Islas , Variación Genética , Genética de Población
11.
Nat Comput Sci ; 3(7): 621-629, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37600116

RESUMEN

Characterizing the genetic structure of large cohorts has become increasingly important as genetic studies extend to massive, increasingly diverse biobanks. Popular methods decompose individual genomes into fractional cluster assignments with each cluster representing a vector of DNA variant frequencies. However, with rapidly increasing biobank sizes, these methods have become computationally intractable. Here we present Neural ADMIXTURE, a neural network autoencoder that follows the same modeling assumptions as the current standard algorithm, ADMIXTURE, while reducing the compute time by orders of magnitude surpassing even the fastest alternatives. One month of continuous compute using ADMIXTURE can be reduced to just hours with Neural ADMIXTURE. A multi-head approach allows Neural ADMIXTURE to offer even further acceleration by calculating multiple cluster numbers in a single run. Furthermore, the models can be stored, allowing cluster assignment to be performed on new data in linear time without needing to share the training samples.

12.
Cell ; 186(14): 3049-3061.e15, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311454

RESUMEN

Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.


Asunto(s)
Actinas , Actomiosina , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Movimiento Celular/fisiología
13.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37066208

RESUMEN

Eukaryotic reverse transcriptases (RTs) can have essential or deleterious roles in normal human physiology and disease. Compared to well-studied helicases, it remains unclear how RTs overcome the ubiquitous RNA structural barriers during reverse transcription. Herein, we describe the development of a Mycobacterium smegmatis porin A (MspA) nanopore technique to sequence RNA to quantify the single-molecule kinetics of an RT from Bombyx mori with single-nucleotide resolution. By establishing a quadromer map that correlates RNA sequence and MspA ion current, we were able to quantify the RT's dwell time at every single nucleotide step along its RNA template. By challenging the enzyme with various RNA structures, we found that during cDNA synthesis the RT can sense and actively destabilize RNA structures 11-12 nt downstream of its front boundary. The ability to sequence single molecules of RNA with nanopores paves the way to investigate the single-nucleotide activity of other processive RNA translocases.

14.
J Chem Phys ; 158(14): 144104, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061497

RESUMEN

Real time modeling of fluorescence with vibronic resolution entails the representation of the light-matter interaction coupled to a quantum-mechanical description of the phonons and is therefore a challenging problem. In this work, taking advantage of the difference in timescales characterizing internal conversion and radiative relaxation-which allows us to decouple these two phenomena by sequentially modeling one after the other-we simulate the electron dynamics of fluorescence through a master equation derived from the Redfield formalism. Moreover, we explore the use of a recent semiclassical dissipative equation of motion [C. M. Bustamante et al., Phys. Rev. Lett. 126, 087401 (2021)], termed coherent electron electric-field dynamics (CEED), to describe the radiative stage. By comparing the results with those from the full quantum-electrodynamics treatment, we find that the semiclassical model does not reproduce the right amplitudes in the emission spectra when the radiative process involves the de-excitation to a manifold of closely lying states. We argue that this flaw is inherent to any mean-field approach and is the case with CEED. This effect is critical for the study of light-matter interaction, and this work is, to our knowledge, the first one to report this problem. We note that CEED reproduces the correct frequencies in agreement with quantum electrodynamics. This is a major asset of the semiclassical model, since the emission peak positions will be predicted correctly without any prior assumption about the nature of the molecular Hamiltonian. This is not so for the quantum electrodynamics approach, where access to the spectral information relies on knowledge of the Hamiltonian eigenvalues.

15.
Clin Med Insights Case Rep ; 16: 11795476231159584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033677

RESUMEN

Background: It has been proposed that the immunomodulatory capacity of neuraltherapeutic medicine (NTM) functions by means of stimuli to the nervous system, which influences the self-regulatory and plastic capacity of the nervous system, especially through the autonomic balance between the sympathetic and parasympathetic nervous systems. Several studies report the usefulness of NTM in inflammatory pathologies. Case presentation: A case report through a retrospective review of the medical history of an 82-year-old male patient with a diagnosis of acute SARS-CoV-2 who received a therapeutic intervention of NTM at the beginning of his hospitalization and presented satisfactory clinical evolution, with a follow-up for 18 months without post-COVID sequelae. A patient diagnosed with acute pneumonia for SARS-CoV-2, and mild ARDS, with markers of severity given by the history of COPD, advanced age, and elevation of LDH, ferritin, and CRP. On the third day of hospitalization, he presented an episode of pulmonary thromboembolism. He presented significant clinical improvement with in-hospital management for 9 days and underwent out-patient control with no post-COVID sequelae. Conclusions: NTM could be useful for the management of acute inflammatory diseases, including viral diseases such as SARS-CoV-2, in a mild or severe state of inflammation, when added to allopathic medicine, and it can improve clinical evolution and long-term sequelae. More studies are needed to validate this information.

16.
Proc Natl Acad Sci U S A ; 120(12): e2221309120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917660

RESUMEN

DNA compaction is required for the condensation and resolution of chromosomes during mitosis, but the relative contribution of individual chromatin factors to this process is poorly understood. We developed a physiological, cell-free system using high-speed Xenopus egg extracts and optical tweezers to investigate real-time mitotic chromatin fiber formation and force-induced disassembly on single DNA molecules. Compared to interphase extract, which compacted DNA by ~60%, metaphase extract reduced DNA length by over 90%, reflecting differences in whole-chromosome morphology under these two conditions. Depletion of the core histone chaperone ASF1, which inhibits nucleosome assembly, decreased the final degree of metaphase fiber compaction by 29%, while depletion of linker histone H1 had a greater effect, reducing total compaction by 40%. Compared to controls, both depletions reduced the rate of compaction, led to more short periods of decompaction, and increased the speed of force-induced fiber disassembly. In contrast, depletion of condensin from metaphase extract strongly inhibited fiber assembly, resulting in transient compaction events that were rapidly reversed under high force. Altogether, these findings support a speculative model in which condensin plays the predominant role in mitotic DNA compaction, while core and linker histones act to reduce slippage during loop extrusion and modulate the degree of DNA compaction.


Asunto(s)
Cromatina , Cromosomas , Animales , Xenopus laevis/genética , ADN , Mitosis
17.
Nature ; 615(7951): 251-258, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890370

RESUMEN

Biological fluids, the most complex blends, have compositions that constantly vary and cannot be molecularly defined1. Despite these uncertainties, proteins fluctuate, fold, function and evolve as programmed2-4. We propose that in addition to the known monomeric sequence requirements, protein sequences encode multi-pair interactions at the segmental level to navigate random encounters5,6; synthetic heteropolymers capable of emulating such interactions can replicate how proteins behave in biological fluids individually and collectively. Here, we extracted the chemical characteristics and sequential arrangement along a protein chain at the segmental level from natural protein libraries and used the information to design heteropolymer ensembles as mixtures of disordered, partially folded and folded proteins. For each heteropolymer ensemble, the level of segmental similarity to that of natural proteins determines its ability to replicate many functions of biological fluids including assisting protein folding during translation, preserving the viability of fetal bovine serum without refrigeration, enhancing the thermal stability of proteins and behaving like synthetic cytosol under biologically relevant conditions. Molecular studies further translated protein sequence information at the segmental level into intermolecular interactions with a defined range, degree of diversity and temporal and spatial availability. This framework provides valuable guiding principles to synthetically realize protein properties, engineer bio/abiotic hybrid materials and, ultimately, realize matter-to-life transformations.


Asunto(s)
Materiales Biomiméticos , Biomimética , Polímeros , Conformación Proteica , Pliegue de Proteína , Proteínas , Secuencia de Aminoácidos , Polímeros/síntesis química , Polímeros/química , Proteínas/química , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Líquidos Corporales/química , Citosol/química , Albúmina Sérica Bovina/química , Biología Sintética
18.
Cell ; 186(6): 1244-1262.e34, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931247

RESUMEN

In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.


Asunto(s)
Proteínas de Escherichia coli , Transcripción Genética , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Ribosomas/metabolismo , Proteínas de Escherichia coli/genética
19.
Rev. cuba. med. mil ; 52(1)mar. 2023.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1521979

RESUMEN

Introducción: La musicoterapia puede ser utilizada para influenciar en el estado físico y emocional de pacientes diagnosticados con la COVID-19. Se realiza una revisión sistemática exploratoria que incluye estudios observacionales y ensayos clínicos; Pubmed y Scopus fueron las bases de datos empleadas para la realización de la búsqueda. Además, se incluyen registros de ensayos clínicos de la Plataforma de Registros Internacionales de Ensayos Clínicos de la Organización Mundial de la Salud. Objetivo: Explorar la literatura médica disponible, sobre el impacto clínico de la musicoterapia en pacientes diagnosticados con la COVID-19. Desarrollo: De 39 documentos encontrados se incluyen 2 artículos: un ensayo clínico y un reporte de caso, con una población total de 41 pacientes. Se encuentra evidencia médica que respalda el impacto clínico favorable sobre la saturación de oxígeno, rehabilitación física y síntomas asociados al estrés en pacientes con diagnóstico de la COVID-19 con y sin requerimiento de soporte ventilatorio. Conclusiones: La musicoterapia es una herramienta útil en el tratamiento y rehabilitación no farmacológica de pacientes con la COVID-19; sin embargo, son necesarios nuevos estudios clínicos con mayor número de poblaciones muestrales y mayor tiempo de seguimiento.


Background: Music therapy can be used to influence the physical and emotional state of patients diagnosed with COVID-19. An exploratory systematic review was carried out including observational studies and clinical trials, Pubmed and Scopus were the databases used to carry out the literature search. In addition, clinical trial registries from the World Health Organization International Clinical Trials Registry Platform are included. Objective: To explore the available medical literature on the clinical impact of music therapy in patients diagnosed with COVID-19. Development: Of 39 documents found in the search, two articles are included: a clinical trial and a case report, with a total population of 41 patients. Medical evidence is found to support the favorable clinical impact on oxygen saturation, physical rehabilitation and symptoms associated with stress in patients diagnosed with COVID-19 with and without the need for ventilatory support. Conclusions: Music therapy is a useful tool in the non-pharmacological treatment and rehabilitation of patients with COVID-19. However, new clinical studies with a larger number of sample populations and follow-up times using music therapy in this disease are necessary.

20.
Nat Microbiol ; 8(4): 695-710, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36823286

RESUMEN

Mycobacteriophages are a diverse group of viruses infecting Mycobacterium with substantial therapeutic potential. However, as this potential becomes realized, the molecular details of phage infection and mechanisms of resistance remain ill-defined. Here we use live-cell fluorescence microscopy to visualize the spatiotemporal dynamics of mycobacteriophage infection in single cells and populations, showing that infection is dependent on the host nucleoid-associated Lsr2 protein. Mycobacteriophages preferentially adsorb at Mycobacterium smegmatis sites of new cell wall synthesis and following DNA injection, Lsr2 reorganizes away from host replication foci to establish zones of phage DNA replication (ZOPR). Cells lacking Lsr2 proceed through to cell lysis when infected but fail to generate consecutive phage bursts that trigger epidemic spread of phage particles to neighbouring cells. Many mycobacteriophages code for their own Lsr2-related proteins, and although their roles are unknown, they do not rescue the loss of host Lsr2.


Asunto(s)
Bacteriófagos , Micobacteriófagos , Mycobacterium , Micobacteriófagos/genética , Mycobacterium smegmatis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA