Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(5): 387-390, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368181

RESUMEN

Poly(UG) or 'pUG' dinucleotide repeats direct gene silencing in Caenorhabditis elegans by adopting an unusual quadruplex structure. Humans have thousands of pUG sequences and proteins that interact with them. The pUG fold reveals new aspects of gene regulation and RNA folding, highlighting how a simple sequence can encode a complex structure.


Asunto(s)
Caenorhabditis elegans , G-Cuádruplex , Silenciador del Gen , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , ARN/metabolismo , ARN/genética , ARN/química
2.
J Mol Biol ; 435(24): 168340, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37924862

RESUMEN

Poly(UG) or "pUG" RNAs are UG or GU dinucleotide repeat sequences which are highly abundant in eukaryotes. Post-transcriptional addition of pUGs to RNA 3' ends marks mRNAs as vectors for gene silencing in C. elegans. We previously determined the crystal structure of pUG RNA bound to the ligand N-methyl mesoporphyrin IX (NMM), but the structure of free pUG RNA is unknown. Here we report the solution structure of the free pUG RNA (GU)12, as determined by nuclear magnetic resonance spectroscopy and small and wide-angle x-ray scattering (NMR-SAXS-WAXS). The low complexity sequence and 4-fold symmetry of the structure result in overlapped NMR signals that complicate chemical shift assignment. We therefore utilized single site-specific deoxyribose modifications which did not perturb the structure and introduced well-resolved methylene signals that are easily identified in NMR spectra. The solution structure ensemble has a root mean squared deviation (RMSD) of 0.62 Å and is a compact, left-handed quadruplex with a Z-form backbone, or "pUG fold." Overall, the structure agrees with the crystal structure of (GU)12 bound to NMM, indicating the pUG fold is unaltered by docking of the NMM ligand. The solution structure reveals conformational details that could not be resolved by x-ray crystallography, which explain how the pUG fold can form within longer RNAs.


Asunto(s)
Poli G , Poli U , ARN , Animales , Caenorhabditis elegans/genética , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , ARN/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Poli U/química , Poli G/química , Conformación de Ácido Nucleico
3.
J Neurosci ; 43(16): 2921-2933, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36894318

RESUMEN

RNA stability is meticulously controlled. Here, we sought to determine whether an essential post-transcriptional regulatory mechanism plays a role in pain. Nonsense-mediated decay (NMD) safeguards against translation of mRNAs that harbor premature termination codons and controls the stability of ∼10% of typical protein-coding mRNAs. It hinges on the activity of the conserved kinase SMG1. Both SMG1 and its target, UPF1, are expressed in murine DRG sensory neurons. SMG1 protein is present in both the DRG and sciatic nerve. Using high-throughput sequencing, we examined changes in mRNA abundance following inhibition of SMG1. We confirmed multiple NMD stability targets in sensory neurons, including ATF4. ATF4 is preferentially translated during the integrated stress response (ISR). This led us to ask whether suspension of NMD induces the ISR. Inhibition of NMD increased eIF2-α phosphorylation and reduced the abundance of the eIF2-α phosphatase constitutive repressor of eIF2-α phosphorylation. Finally, we examined the effects of SMG1 inhibition on pain-associated behaviors. Peripheral inhibition of SMG1 results in mechanical hypersensitivity in males and females that persists for several days and priming to a subthreshold dose of PGE2. Priming was fully rescued by a small-molecule inhibitor of the ISR. Collectively, our results indicate that suspension of NMD promotes pain through stimulation of the ISR.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in their plasticity which may contribute to chronic pain. Translational regulation has emerged as a dominant mechanism in pain. Here, we investigate the role of a major pathway of RNA surveillance called nonsense-mediated decay (NMD). Modulation of NMD is potentially beneficial for a broad array of diseases caused by frameshift or nonsense mutations. Our results suggest that inhibition of the rate-limiting step of NMD drives behaviors associated with pain through activation of the ISR. This work reveals complex interconnectivity between RNA stability and translational regulation and suggests an important consideration in harnessing the salubrious benefits of NMD disruption.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Nocicepción , Masculino , Femenino , Humanos , Ratones , Animales , Factor 2 Eucariótico de Iniciación/genética , Degradación de ARNm Mediada por Codón sin Sentido , Fosforilación , Dolor , ARN Helicasas/genética , ARN Helicasas/metabolismo , Transactivadores/genética
4.
Nat Struct Mol Biol ; 29(11): 1113-1121, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352138

RESUMEN

The addition of poly(UG) ('pUG') repeats to 3' termini of mRNAs drives gene silencing and transgenerational epigenetic inheritance in the metazoan Caenorhabditis elegans. pUG tails promote silencing by recruiting an RNA-dependent RNA polymerase (RdRP) that synthesizes small interfering RNAs. Here we show that active pUG tails require a minimum of 11.5 repeats and adopt a quadruplex (G4) structure we term the pUG fold. The pUG fold differs from known G4s in that it has a left-handed backbone similar to Z-RNA, no consecutive guanosines in its sequence, and three G quartets and one U quartet stacked non-sequentially. The compact pUG fold binds six potassium ions and brings the RNA ends into close proximity. The biological importance of the pUG fold is emphasized by our observations that porphyrin molecules bind to the pUG fold and inhibit both gene silencing and binding of RdRP. Moreover, specific 7-deaza substitutions that disrupt the pUG fold neither bind RdRP nor induce RNA silencing. These data define the pUG fold as a previously unrecognized RNA structural motif that drives gene silencing. The pUG fold can also form internally within larger RNA molecules. Approximately 20,000 pUG-fold sequences are found in noncoding regions of human RNAs, suggesting that the fold probably has biological roles beyond gene silencing.


Asunto(s)
Proteínas de Caenorhabditis elegans , Silenciador del Gen , Humanos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN
5.
Proc Natl Acad Sci U S A ; 119(48): e2206815119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417433

RESUMEN

Spliceosome activation is the process of creating the catalytic site for RNA splicing and occurs de novo on each intron following spliceosome assembly. Dozens of factors bind to or are released from the activating spliceosome including the Lsm2-8 heteroheptameric ring that binds the U6 small nuclear RNA 3'-end. Lsm2-8 must be released to permit active site stabilization by the Prp19-containing complex (NineTeen Complex, NTC); however, little is known about the temporal order of events and dynamic interactions that lead up to and follow Lsm2-8 release. We have used colocalization single molecule spectroscopy (CoSMoS) to visualize Lsm2-8 dynamics during activation of Saccharomyces cerevisiae spliceosomes in vitro. Lsm2-8 is recruited as a component of the tri-snRNP and is released after integration of the Prp19-containing complex (NTC). Despite Lsm2-8 and the NTC being mutually exclusive in existing cryo-EM structures of yeast B complex spliceosomes, we identify a transient intermediate containing both ([Formula: see text]) and provide a kinetic framework for its formation and transformation during activation. Prior to [Formula: see text] assembly, the NTC rapidly and reversibly samples the spliceosome suggesting a mechanism for preventing NTC sequestration by defective spliceosomes that fail to properly activate. In complementary ensemble assays, we show that a base-pairing-dependent ternary complex can form between Lsm2-8 and U2 and U6 helix II RNAs. We propose that this interaction may play a role in formation of transient spliceosome intermediates formed during activation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Empalmosomas , Empalmosomas/genética , Imagen Individual de Molécula , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía Fluorescente , Factores de Empalme de ARN/metabolismo
6.
J Virol ; 96(1): e0134921, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643428

RESUMEN

HIV-1 virion production is driven by Gag and Gag-Pol (GP) proteins, with Gag forming the bulk of the capsid and driving budding, while GP binds Gag to deliver the essential virion enzymes protease, reverse transcriptase, and integrase. Virion GP levels are traditionally thought to reflect the relative abundances of GP and Gag in cells (∼1:20), dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event occurring in gag-pol mRNAs. Here, we exploited a panel of PRF mutant viruses to show that mechanisms in addition to PRF regulate GP incorporation into virions. First, we show that GP is enriched ∼3-fold in virions relative to cells, with viral infectivity being better maintained at subphysiological levels of GP than when GP levels are too high. Second, we report that GP is more efficiently incorporated into virions when Gag and GP are synthesized in cis (i.e., from the same gag-pol mRNA) than in trans, suggesting that Gag/GP translation and assembly are spatially coupled processes. Third, we show that, surprisingly, virions exhibit a strong upper limit to trans-delivered GP incorporation; an adaptation that appears to allow the virus to temper defects to GP/Gag cleavage that may negatively impact reverse transcription. Taking these results together, we propose a "weighted Goldilocks" scenario for HIV-1 GP incorporation, wherein combined mechanisms of GP enrichment and exclusion buffer virion infectivity over a broad range of local GP concentrations. These results provide new insights into the HIV-1 virion assembly pathway relevant to the anticipated efficacy of PRF-targeted antiviral strategies. IMPORTANCE HIV-1 infectivity requires incorporation of the Gag-Pol (GP) precursor polyprotein into virions during the process of virus particle assembly. Mechanisms dictating GP incorporation into assembling virions are poorly defined, with GP levels in virions traditionally thought to solely reflect relative levels of Gag and GP expressed in cells, dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event that occurs in gag-pol mRNAs. Herein, we provide experimental support for a "weighted Goldilocks" scenario for GP incorporation, wherein the virus exploits both random and nonrandom mechanisms to buffer infectivity over a wide range of GP expression levels. These mechanistic data are relevant to ongoing efforts to develop antiviral strategies targeting PRF frequency and/or HIV-1 virion maturation.


Asunto(s)
Sistema de Lectura Ribosómico , Regulación Viral de la Expresión Génica , Infecciones por VIH/virología , VIH-1/fisiología , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , Humanos , Secuencias Invertidas Repetidas , Modelos Biológicos , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN Viral/química , ARN Viral/genética , Virión , Replicación Viral
7.
Biochemistry ; 59(37): 3463-3472, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32856901

RESUMEN

There are few methods available for the rapid discovery of multitarget drugs. Herein, we describe the template-assisted, target-guided discovery of small molecules that recognize d(CTG) in the expanded d(CTG·CAG) sequence and its r(CUG) transcript that cause myotonic dystrophy type 1. A positive cross-selection was performed using a small library of 30 monomeric alkyne- and azide-containing ligands capable of producing >5000 possible di- and trimeric click products. The monomers were incubated with d(CTG)16 or r(CUG)16 under physiological conditions, and both sequences showed selectivity in the proximity-accelerated azide-alkyne [3+2] cycloaddition click reaction. The limited number of click products formed in both selections and the even smaller number of common products suggests that this method is a useful tool for the discovery of single-target and multitarget lead therapeutic agents.


Asunto(s)
ADN/antagonistas & inhibidores , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , ARN/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Expansión de Repetición de Trinucleótido/efectos de los fármacos , Células Cultivadas , ADN/genética , ADN/metabolismo , Humanos , Distrofia Miotónica/patología , ARN/genética , ARN/metabolismo , Expansión de Repetición de Trinucleótido/genética
8.
RNA ; 26(10): 1400-1413, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32518066

RESUMEN

Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2',3' cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines. Lsm5 uniquely recognizes purine bases, explaining its divergent sequence relative to other Lsm subunits. Lsm1-7 loads onto RNA from the 3' end and removal of the Lsm1 carboxy-terminal region allows Lsm1-7 to scan along RNA, suggesting a gated mechanism for accessing internal binding sites. These data reveal the molecular basis for RNA binding by Lsm proteins, a fundamental step in the formation of molecular assemblies that are central to eukaryotic mRNA metabolism.


Asunto(s)
Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Sitios de Unión/genética , Unión Proteica/genética , ARN/genética , Proteínas de Unión a Caperuzas de ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Saccharomyces cerevisiae/genética , Empalmosomas/genética
9.
Nucleic Acids Res ; 48(3): 1423-1434, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31832688

RESUMEN

U6 snRNA undergoes post-transcriptional 3' end modification prior to incorporation into the active site of spliceosomes. The responsible exoribonuclease is Usb1, which removes nucleotides from the 3' end of U6 and, in humans, leaves a 2',3' cyclic phosphate that is recognized by the Lsm2-8 complex. Saccharomycescerevisiae Usb1 has additional 2',3' cyclic phosphodiesterase (CPDase) activity, which converts the cyclic phosphate into a 3' phosphate group. Here we investigate the molecular basis for the evolution of Usb1 CPDase activity. We examine the structure and function of Usb1 from Kluyveromyces marxianus, which shares 25 and 19% sequence identity to the S. cerevisiae and Homo sapiens orthologs of Usb1, respectively. We show that K. marxianus Usb1 enzyme has CPDase activity and determined its structure, free and bound to the substrate analog uridine 5'-monophosphate. We find that the origin of CPDase activity is related to a loop structure that is conserved in yeast and forms a distinct penultimate (n - 1) nucleotide binding site. These data provide structural and mechanistic insight into the evolutionary divergence of Usb1 catalysis.


Asunto(s)
Evolución Molecular , Proteínas Mitocondriales/genética , Hidrolasas Diéster Fosfóricas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sitios de Unión/genética , Dominio Catalítico/genética , Humanos , Kluyveromyces/química , Proteínas Mitocondriales/química , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/genética , Fosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/química , Empalme del ARN/genética , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Empalmosomas/química , Empalmosomas/genética
10.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 10): 652-656, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31584014

RESUMEN

The structure of a 22-base-pair RNA helix with mismatched pyrimidine base pairs is reported. The helix contains two symmetry-related CUG sequences: a triplet-repeat motif implicated in myotonic dystrophy type 1. The CUG repeat contains a U-U mismatch sandwiched between Watson-Crick pairs. Additionally, the center of the helix contains a dimerized UUCG motif with tandem pyrimidine (U-C/C-U) mismatches flanked by U-G wobble pairs. This region of the structure is significantly different from previously observed structures that share the same sequence and neighboring base pairs. The tandem pyrimidine mismatches are unusual and display sheared, cross-strand stacking geometries that locally constrict the helical width, a type of stacking previously associated with purines in internal loops. Thus, pyrimidine-rich regions of RNA have a high degree of structural diversity.


Asunto(s)
Disparidad de Par Base , Pirimidinas/química , ARN/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Secuencias Repetitivas de Ácidos Nucleicos
11.
RNA ; 25(3): 376-387, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578285

RESUMEN

A presumed RNA cloverleaf (5'CL), located at the 5'-most end of the noncoding region of the enterovirus genome, is the primary established site for initiation of genomic replication. Stem-loop B (SLB) and stem-loop D (SLD), the two largest stem-loops within the 5'CL, serve as recognition sites for protein interactions that are essential for replication. Here we present the solution structure of rhinovirus serotype 14 5'CL using a combination of nuclear magnetic resonance spectroscopy and small-angle X-ray scattering. In the absence of magnesium, the structure adopts an open, somewhat extended conformation. In the presence of magnesium, the structure compacts, bringing SLB and SLD into close contact, a geometry that creates an extensive accessible major groove surface, and permits interaction between the proteins that target each stem-loop.


Asunto(s)
Enterovirus/genética , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética , Transcripción Genética , Regulación Viral de la Expresión Génica , Magnesio/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Relación Estructura-Actividad , Replicación Viral
12.
Nucleic Acids Res ; 46(21): 11488-11501, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30215753

RESUMEN

Post-transcriptional modification of snRNA is central to spliceosome function. Usb1 is an exoribonuclease that shortens the oligo-uridine tail of U6 snRNA, resulting in a terminal 2',3' cyclic phosphate group in most eukaryotes, including humans. Loss of function mutations in human Usb1 cause the rare disorder poikiloderma with neutropenia (PN), and result in U6 snRNAs with elongated 3' ends that are aberrantly adenylated. Here, we show that human Usb1 removes 3' adenosines with 20-fold greater efficiency than uridines, which explains the presence of adenylated U6 snRNAs in cells lacking Usb1. We determined three high-resolution co-crystal structures of Usb1: wild-type Usb1 bound to the substrate analog adenosine 5'-monophosphate, and an inactive mutant bound to RNAs with a 3' terminal adenosine and uridine. These structures, along with QM/MM MD simulations of the catalytic mechanism, illuminate the molecular basis for preferential deadenylation of U6 snRNA. The extent of Usb1 processing is influenced by the secondary structure of U6 snRNA.


Asunto(s)
Adenosina/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , ARN Nuclear Pequeño/metabolismo , Uridina/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Predisposición Genética a la Enfermedad/genética , Humanos , Modelos Moleculares , Mutación , Neutropenia/genética , Neutropenia/metabolismo , Conformación de Ácido Nucleico , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Unión Proteica , Conformación Proteica , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , Anomalías Cutáneas/genética , Anomalías Cutáneas/metabolismo , Especificidad por Sustrato
13.
Cell Rep ; 24(9): 2248-2260, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30157421

RESUMEN

Length-dependent axonopathy of the corticospinal tract causes lower limb spasticity and is characteristic of several neurological disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis. Mutations in Trk-fused gene (TFG) have been implicated in both diseases, but the pathomechanisms by which these alterations cause neuropathy remain unclear. Here, we biochemically and genetically define the impact of a mutation within the TFG coiled-coil domain, which underlies early-onset forms of HSP. We find that the TFG (p.R106C) mutation alters compaction of TFG ring complexes, which play a critical role in the export of cargoes from the endoplasmic reticulum (ER). Using CRISPR-mediated genome editing, we engineered human stem cells that express the mutant form of TFG at endogenous levels and identified specific defects in secretion from the ER and axon fasciculation following neuronal differentiation. Together, our data highlight a key role for TFG-mediated protein transport in the pathogenesis of HSP.


Asunto(s)
Fasciculación Axonal/genética , Proteínas/genética , Proteínas/metabolismo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Axones/metabolismo , Axones/patología , Secuencia de Bases , Humanos , Mutación , Neuronas/metabolismo , Neuronas/patología , Transporte de Proteínas , Paraplejía Espástica Hereditaria/patología
14.
Nat Commun ; 9(1): 1749, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717126

RESUMEN

The spliceosome removes introns from precursor messenger RNA (pre-mRNA) to produce mature mRNA. Prior to catalysis, spliceosomes are assembled de novo onto pre-mRNA substrates. During this assembly process, U6 small nuclear RNA (snRNA) undergoes extensive structural remodeling. The early stages of this remodeling process are chaperoned by U6 snRNP proteins Prp24 and the Lsm2-8 heteroheptameric ring. We now report a structure of the U6 snRNP from Saccharomyces cerevisiae. The structure reveals protein-protein contacts that position Lsm2-8 in close proximity to the chaperone "active site" of Prp24. The structure also shows how the Lsm2-8 ring specifically recognizes U6 snRNA that has been post-transcriptionally modified at its 3' end, thereby elucidating the mechanism by which U6 snRNPs selectively recruit 3' end-processed U6 snRNA into spliceosomes. Additionally, the structure reveals unanticipated homology between the C-terminal regions of Lsm8 and the cytoplasmic Lsm1 protein involved in mRNA decay.


Asunto(s)
ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Conformación Proteica , Procesamiento de Término de ARN 3' , Procesamiento Postranscripcional del ARN , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido
15.
RNA ; 24(4): 437-460, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29367453

RESUMEN

Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.


Asunto(s)
Sitios de Empalme de ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética , ARN Nuclear Pequeño/genética , Empalmosomas/metabolismo , Humanos , Conformación de Ácido Nucleico , ARN Polimerasa III/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN Nuclear Pequeño/biosíntesis , Saccharomyces cerevisiae/genética
16.
Nat Commun ; 8(1): 497, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28887445

RESUMEN

U6 small nuclear ribonucleoprotein (snRNP) biogenesis is essential for spliceosome assembly, but not well understood. Here, we report structures of the U6 RNA processing enzyme Usb1 from yeast and a substrate analog bound complex from humans. Unlike the human ortholog, we show that yeast Usb1 has cyclic phosphodiesterase activity that leaves a terminal 3' phosphate which prevents overprocessing. Usb1 processing of U6 RNA dramatically alters its affinity for cognate RNA-binding proteins. We reconstitute the post-transcriptional assembly of yeast U6 snRNP in vitro, which occurs through a complex series of handoffs involving 10 proteins (Lhp1, Prp24, Usb1 and Lsm2-8) and anti-cooperative interactions between Prp24 and Lhp1. We propose a model for U6 snRNP assembly that explains how evolutionarily divergent and seemingly antagonistic proteins cooperate to protect and chaperone the nascent snRNA during its journey to the spliceosome.The mechanism of U6 small nuclear ribonucleoprotein (snRNP) biogenesis is not well understood. Here the authors characterize the enzymatic activities and structures of yeast and human U6 RNA processing enzyme Usb1, reconstitute post-transcriptional assembly of yeast U6 snRNP in vitro, and propose a model for U6 snRNP assembly.


Asunto(s)
Hidrolasas Diéster Fosfóricas/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Variación Genética , Humanos , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Unión Proteica , Dominios Proteicos , ARN Nuclear Pequeño/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
17.
Acta Crystallogr D Struct Biol ; 73(Pt 1): 1-8, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28045380

RESUMEN

U6 small nuclear RNA (snRNA) is a key component of the active site of the spliceosome, a large ribonucleoprotein complex that catalyzes the splicing of precursor messenger RNA. Prior to its incorporation into the spliceosome, U6 is bound by the protein Prp24, which facilitates unwinding of the U6 internal stem-loop (ISL) so that it can pair with U4 snRNA. A previously reported crystal structure of the `core' of the U6 small nuclear ribonucleoprotein (snRNP) contained an ISL-stabilized A62G mutant of U6 bound to all four RNA-recognition motif (RRM) domains of Prp24 [Montemayor et al. (2014), Nature Struct. Mol. Biol. 21, 544-551]. The structure revealed a novel topology containing interlocked rings of protein and RNA that was not predicted by prior biochemical and genetic data. Here, the crystal structure of the U6 snRNP core with a wild-type ISL is reported. This complex crystallized in a new space group, apparently owing in part to the presence of an intramolecular cross-link in RRM1 that was not observed in the previously reported U6-A62G structure. The structure exhibits the same protein-RNA interface and maintains the unique interlocked topology. However, the orientation of the wild-type ISL is altered relative to the A62G mutant structure, suggesting inherent structural dynamics that may facilitate its pairing with U4. Consistent with their similar architectures in the crystalline state, the wild-type and A62G variants of U6 exhibit similar Prp24-binding affinities and electrophoretic mobilities when analyzed by gel-shift assay.

18.
RNA Biol ; 13(11): 1068-1074, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27654067

RESUMEN

Viruses maintain compact genomes that must be packaged within capsids typically less than 200 nanometers in diameter. Therefore, instead of coding for a full set of genes needed for replication, viruses have evolved remarkable strategies for co-opting the host cellular machinery. Additionally, viruses often increase the coding capacity of their own genomes by employing overlapping open reading frames (ORFs). Some overlapping viral ORFs involve recoding events that are programmed by the viral RNA. During these programmed recoding events, the ribosome is directed to translate in an alternative reading frame. Here we describe how the Dicistroviridae family of viruses utilize an internal ribosome entry site (IRES) in order to recruit ribosomes to initiate translation at a non-AUG codon. The IRES accomplishes this in part by mimicking the structure of a tRNA. Recently, we showed that the Israeli Acute Paralysis Virus (IAPV) member of the Dicistroviridae family utilizes its IRES to initiate translation in 2 different reading frames. Thus, IAPV has evolved an apparently novel recoding mechanism that reveals important insights into translation. Finally, we compare the IAPV structure to other systems that utilize tRNA mimicry in translation.


Asunto(s)
Dicistroviridae/genética , Sitios Internos de Entrada al Ribosoma , ARN de Transferencia/química , Ribosomas/metabolismo , Código Genético , Genoma Viral , Modelos Moleculares , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN de Transferencia/genética
19.
Nucleic Acids Res ; 44(22): 10912-10928, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27484481

RESUMEN

The small nuclear RNA (snRNA) components of the spliceosome undergo many conformational rearrangements during its assembly, catalytic activation and disassembly. The U4 and U6 snRNAs are incorporated into the spliceosome as a base-paired complex within the U4/U6.U5 small nuclear ribonucleoprotein (tri-snRNP). U4 and U6 are then unwound in order for U6 to pair with U2 to form the spliceosome's active site. After splicing, U2/U6 is unwound and U6 annealed to U4 to reassemble the tri-snRNP. U6 rearrangements are crucial for spliceosome formation but are poorly understood. We have used single-molecule Förster resonance energy transfer and unwinding assays to identify interactions that promote U4/U6 unwinding and have studied their impact in yeast. We find that U4/U6 is efficiently unwound using DNA oligonucleotides by coupling unwinding of U4/U6 stem II with strand invasion of stem I. Unwinding is stimulated by the U6 telestem, which transiently forms in the intact U4/U6 RNA complex. Stabilization of the telestem in vivo results in accumulation of U4/U6 di-snRNP and impairs yeast growth. Our data reveal conserved mechanisms for U4/U6 unwinding and indicate telestem dynamics are critical for tri-snRNP assembly and stability.


Asunto(s)
ARN de Hongos/química , ARN Nuclear Pequeño/química , Saccharomyces cerevisiae/fisiología , Emparejamiento Base , Cinética , Estabilidad del ARN , ARN Bicatenario/química
20.
J Virol ; 90(15): 6906-6917, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27194769

RESUMEN

UNLABELLED: Human immunodeficiency virus (HIV) replication is strongly dependent upon a programmed ribosomal frameshift. Here we investigate the relationships between the thermodynamic stability of the HIV type 1 (HIV-1) RNA frameshift site stem-loop, frameshift efficiency, and infectivity, using pseudotyped HIV-1 and HEK293T cells. The data reveal a strong correlation between frameshift efficiency and local, but not overall, RNA thermodynamic stability. Mutations that modestly increase the local stability of the frameshift site RNA stem-loop structure increase frameshift efficiency 2-fold to 3-fold in cells. Thus, frameshift efficiency is determined by the strength of the thermodynamic barrier encountered by the ribosome. These data agree with previous in vitro measurements, suggesting that there are no virus- or host-specific factors that modulate frameshifting. The data also indicate that there are no sequence-specific requirements for the frameshift site stem-loop. A linear correlation between Gag-polymerase (Gag-Pol) levels in cells and levels in virions supports the idea of a stochastic virion assembly mechanism. We further demonstrate that the surrounding genomic RNA secondary structure influences frameshift efficiency and that a mutation that commonly arises in response to protease inhibitor therapy creates a functional but inefficient secondary slippery site. Finally, HIV-1 mutants with enhanced frameshift efficiencies are significantly less infectious, suggesting that compounds that increase frameshift efficiency by as little as 2-fold may be effective at suppressing HIV-1 replication. IMPORTANCE: HIV, like many retroviruses, utilizes a -1 programmed ribosomal frameshift to generate viral enzymes in the form of a Gag-Pol polyprotein precursor. Thus, frameshifting is essential for viral replication. Here, we utilized a panel of mutant HIV strains to demonstrate that in cells, frameshifting efficiency is correlated with the stability of the local thermodynamic barrier to ribosomal translocation. Increasing the stability of the frameshift site RNA increases the frameshift efficiency 2-fold to 3-fold. Mutant viruses with increased frameshift efficiencies have significantly reduced infectivity. These data suggest that this effect might be exploited in the development of novel antiviral strategies.


Asunto(s)
Mutación del Sistema de Lectura/genética , Sistema de Lectura Ribosómico/genética , Proteínas de Fusión gag-pol/metabolismo , Infecciones por VIH/virología , VIH-1/genética , ARN Viral/genética , Virión/fisiología , Emparejamiento Base , Secuencia de Bases , Regulación Viral de la Expresión Génica , Células HEK293 , Infecciones por VIH/genética , VIH-1/química , VIH-1/metabolismo , Humanos , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN Viral/química , ARN Viral/metabolismo , Ensamble de Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA