Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 237
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732117

Glomerular hyperfiltration (GH) has been reported to be higher in women with polycystic ovary syndrome (PCOS) and is an independent risk factor for renal function deterioration, metabolic, and cardiovascular disease. The aim of this study was to determine GH in type A PCOS subjects and to identify whether inflammatory markers, markers of CKD, renal tubule injury markers, and complement system proteins were associated. In addition, a secondary cohort study was performed to determine if the eGFR had altered over time. In this comparative cross-sectional analysis, demographic, metabolic, and proteomic data from Caucasian women aged 18-40 years from a PCOS Biobank (137 with PCOS, 97 controls) was analyzed. Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement was undertaken for inflammatory proteins, serum markers of chronic kidney disease (CKD), tubular renal injury markers, and complement system proteins. A total of 44.5% of the PCOS cohort had GH (eGFR ≥ 126 mL/min/1.73 m2 (n = 55)), and 12% (n = 17) eGFR ≥ 142 mL/min/1.73 m2 (super-GH(SGH)). PCOS-GH women were younger and had lower creatinine and urea versus PCOS-nonGH. C-reactive protein (CRP), white cell count (WCC), and systolic blood pressure (SBP) were higher in PCOS versus controls, but CRP correlated only with PCOS-SGH alone. Complement protein changes were seen between controls and PCOS-nonGH, and decay-accelerator factor (DAF) was decreased between PCOS-nonGH and PCOS-GSGH (p < 0.05). CRP correlated with eGFR in the PCOS-SGH group, but not with other inflammatory or complement parameters. Cystatin-c (a marker of CKD) was reduced between PCOS-nonGH and PCOS-GSGH (p < 0.05). No differences in tubular renal injury markers were found. A secondary cohort notes review of the biobank subjects 8.2-9.6 years later showed a reduction in eGFR: controls -6.4 ± 12.6 mL/min/1.73 m2 (-5.3 ± 11.5%; decrease 0.65%/year); PCOS-nonGH -11.3 ± 13.7 mL/min/1.73 m2 (-9.7 ± 12.2%; p < 0.05, decrease 1%/year); PCOS-GH (eGFR 126-140 mL/min/17.3 m2) -27.1 ± 12.8 mL/min/1.73 m2 (-19.1 ± 8.7%; p < 0.0001, decrease 2%/year); PCOS-SGH (eGFR ≥ 142 mL/min/17.3 m2) -33.7 ± 8.9 mL/min/17.3 m2 (-22.8 ± 6.0%; p < 0.0001, decrease 3.5%/year); PCOS-nonGH eGFR versus PCOS-GH and PCOS-SGH, p < 0.001; no difference PCOS-GH versus PCOS-SGH. GH was associated with PCOS and did not appear mediated through tubular renal injury; however, cystatin-c and DAF were decreased, and CRP correlated positively with PCOS-SGH, suggesting inflammation may be involved at higher GH. There were progressive eGFR decrements for PCOS-nonGH, PCOS-GH, and PCOS-SGH in the follow-up period which, in the presence of additional factors affecting renal function, may be clinically important in the development of CKD in PCOS.


Biomarkers , Glomerular Filtration Rate , Polycystic Ovary Syndrome , Renal Insufficiency, Chronic , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/physiopathology , Polycystic Ovary Syndrome/blood , Adult , Cross-Sectional Studies , Biomarkers/blood , Young Adult , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/etiology , Adolescent , C-Reactive Protein/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism
2.
Diabetes Metab Syndr ; 18(4): 103005, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38615570

OBJECTIVE: The hemoglobin A1c (HbA1c) diagnostic threshold for type 2 diabetes (T2D) of 6.5 % (48 mmol/mol) was based on the prevalence of retinopathy found in populations not known to have T2D. It is unclear if nephropathy has a similar HbA1c threshold, partly because it is a rarer complication of early diabetes. This cohort study investigated a very high diabetes prevalence population to determine if a better diagnostic HbA1c value can be established for predicting nephropathy rather than retinopathy in subjects without T2D. METHODS: The urine albumin:creatinine ratios (UACRs) of 2920 healthy individuals from the Qatar Biobank who had an HbA1c ≥ 5.6 %. were studied. Nephropathy was defined as a UACR≥30 mg/g and its prediction by HbA1c was assessed using cut-points ranging from 5.7 to 7.0 % to dichotomize high from low HbA1c. RESULTS: Although there was a significant trend for an increased prevalence of abnormal UACR as the HbA1c threshold increased (p < 0.01), significance was due mostly to subjects with HbA1c ≥ 7.0 % (53 mmol/mol). The odds ratios for abnormal UACR were similar over the 5.7-6.9 % HbA1c threshold range, with a narrow odds ratio range of 1.2-1.6. Utilizing area-under-receiver-operating characteristic curves, no HbA1c threshold <7.0 % was identified as the best predictor of nephropathy. CONCLUSION: Even in a population with a high prevalence of known and unknown diabetes, no HbA1c threshold <7.0 % could be found predicting an increased prevalence of nephropathy. This means there is not a requirement to change the existing retinopathy-based HbA1c threshold of 6.5 % to also accommodate diabetes nephropathy risk.

3.
Metabolism ; 156: 155917, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38642828

Diabetes mellitus (DM) is comprised of two predominant subtypes: type 1 diabetes mellitus (T1DM), accounting for approximately 5 % of cases worldwide and resulting from autoimmune destruction of insulin-producing ß-cells, and type 2 (T2DM), accounting for approximately 95 % of cases globally and characterized by the inability of pancreatic ß-cells to meet the demand for insulin due to a relative ß-cell deficit in the setting of peripheral insulin resistance. Both types of DM involve derangement of glucose metabolism and are metabolic diseases generally considered to be initiated by a combination of genetic and environmental factors. Viruses have been reported to play a role as infectious etiological factors in the initiation of both types of DM in predisposed individuals. Among the reported viral infections causing DM in humans, the most studied include coxsackie B virus, cytomegalovirus and hepatitis C virus. The recent COVID-19 pandemic has highlighted the diabetogenic potential of SARS-CoV-2, rekindling interest in the field of virus-induced diabetes (VID). This review discusses the reported mechanisms of viral-induced DM, addressing emerging concepts in VID, as well as highlighting areas where knowledge is lacking, and further investigation is warranted.

4.
J Clin Exp Hepatol ; 14(4): 101365, 2024.
Article En | MEDLINE | ID: mdl-38433957

Background: MicroRNAs (miRNAs) are promising therapeutic agents for non-alcoholic fatty liver disease (NAFLD). This study aimed to identify key genes/proteins involved in NAFLD pathogenesis and progression and to evaluate miRNAs influencing their expression. Methods: Gene expression profiles from datasets GSE151158, GSE163211, GSE135251, GSE167523, GSE46300, and online databases were analyzed to identify significant NAFLD-related genes. Then, protein-protein interaction networks and module analysis identified hub genes/proteins, which were validated using real-time PCR in oleic acid-treated HepG2 cells. Functional enrichment analysis evaluated signaling pathways and biological processes. Gene-miRNA interaction networks identified miRNAs targeting critical NAFLD genes. Results: The most critical overexpressed hub genes/proteins included: TNF, VEGFA, TLR4, CYP2E1, ACE, SCD, FASN, SREBF2, and TGFB1 based on PPI network analysis, of which TNF, TLR4, SCD, FASN, SREBF2, and TGFB1 were up-regulated in oleic acid-treated HepG2 cells. Functional enrichment analysis for biological processes highlighted programmed necrotic cell death, lipid metabolic process response to reactive oxygen species, and inflammation. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the highest adjusted P-value signaling pathways encompassed AGE-RAGE in diabetic complications, TNF, and HIF-1 signaling pathways. In gene-miRNA network analysis, miR-16 and miR-124 were highlighted as the miRNAs exerting the most influence on important NAFLD-related genes. Conclusion: In silico analyses identified NAFLD therapeutic targets and miRNA candidates to guide further experimental investigation.

5.
Prog Mol Biol Transl Sci ; 204: 1-43, 2024.
Article En | MEDLINE | ID: mdl-38458734

Atherosclerosis represents a pathological state that affects the arterial system of the organism. This chronic, progressive condition is typified by the accumulation of atheroma within arterial walls. Modulation of RNA molecules through RNA-based therapies has expanded the range of therapeutic options available for neurodegenerative diseases, infectious diseases, cancer, and, more recently, cardiovascular disease (CVD). Presently, microRNAs and small interfering RNAs (siRNAs) are the most widely employed therapeutic strategies for targeting RNA molecules, and for regulating gene expression and protein production. Nevertheless, for these agents to be developed into effective medications, various obstacles must be overcome, including inadequate binding affinity, instability, challenges of delivering to the tissues, immunogenicity, and off-target toxicity. In this comprehensive review, we discuss in detail the current state of RNA interference (RNAi)-based therapies.


Atherosclerosis , MicroRNAs , Neoplasms , Humans , RNA Interference , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Small Interfering/therapeutic use , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Neoplasms/therapy , Atherosclerosis/therapy , Atherosclerosis/drug therapy
6.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38542535

Exosomes are extracellular vesicles of endosomal origin, ranging from 30 to 150 nm in diameter, that mediate intercellular transfer of various biomolecules, such as proteins, lipids, nucleic acids, and metabolites. They modulate the functions of recipient cells and participate in diverse physiological and pathological processes, such as immune responses, cell-cell communication, carcinogenesis, and viral infection. Stem cells (SCs) are pluripotent or multipotent cells that can differentiate into various cell types. SCs can also secrete exosomes, which exhibit remarkable therapeutic potential for various diseases, especially in the field of regenerative medicine. For example, exosomes derived from mesenchymal stem cells (MSCs) contain proteins, lipids, and miRNAs that can ameliorate endocrine disorders, such as diabetes and cancer. Exosomes from SCs (sc-exos) may offer similar advantages as SCs, but with reduced risks and challenges. Sc-exos have lower tumorigenicity, immunogenicity, and infectivity. They can also deliver drugs more efficiently and penetrate deeper into tissues. In this review, we provide an overview of the recent advances in sc-exos and their therapeutic applications in various diseases, such as diabetes and cancer. We also elucidate how the biological effects of sc-exos depend on their molecular composition. We also address the current challenges and future directions of using sc-exos.


Diabetes Mellitus , Exosomes , Neoplasms , Humans , Exosomes/metabolism , Stem Cells , Neoplasms/therapy , Neoplasms/metabolism , Diabetes Mellitus/therapy , Diabetes Mellitus/metabolism , Lipids
7.
J Diabetes Complications ; 38(4): 108722, 2024 04.
Article En | MEDLINE | ID: mdl-38503000

BACKGROUNDS: Non-alcoholic fatty liver disease (NAFLD) is a common condition affecting >25 % of the population worldwide. This disorder ranges in severity from simple steatosis (fat accumulation) to severe steatohepatitis (inflammation), fibrosis and, at its end-stage, liver cancer. A number of studies have identified overexpression of several key genes that are critical in the initiation and progression of NAFLD. MiRNAs are potential therapeutic agents that can regulate several genes simultaneously. Therefore, we transfected cell lines with two key miRNAs involved in targeting NAFLD-related genes. METHODS: The suppression effects of the investigated miRNAs (miR-124 and miR-16) and genes (TNF, TLR4, SCD, FASN, SREBF2, and TGFß-1) from our previous study were investigated by real-time PCR in Huh7 and HepG2 cells treated with oleic acid. Oil red O staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were utilized to assess cell lipid accumulation and cytotoxic effects of the miRNAs, respectively. The pro-oxidant-antioxidant balance (PAB) assay was undertaken for miR-16 and miR-124 after cell transfection. RESULTS: Following transfection of miRNAs into HepG2, oil red O staining showed miR-124 and miR-16 reduced oleic acid-induced lipid accumulation by 35.2 % and 28.6 % respectively (p < 0.05). In Huh7, miR-124 and miR-16 reduced accumulation by 23.5 % and 31.3 % respectively (p < 0.05) but without impacting anti-oxidant activity. Real-time PCR in HepG2 revealed miR-124 decreased expression of TNF by 0.13-fold, TLR4 by 0.12-fold and SREBF2 by 0.127-fold (p < 0.05). miR-16 decreased TLR4 by 0.66-fold and FASN by 0.3-fold (p < 0.05). In Huh7, miR-124 decreased TNF by 0.12-fold and FASN by 0.09-fold (p < 0.05). miR-16 decreased SCD by 0.28-fold and FASN by 0.64-fold (p < 0.05). MTT assays showed, in HepG2, viability was decreased 24.7 % by miR-124 and decreased 33 % by miR-16 at 72 h (p < 0.05). In Huh7, miR-124 decreased viability 42 % at 48 h and 29.33 % at 72 h (p < 0.05), while miR-16 decreased viability by 32.3 % (p < 0.05). CONCLUSION: These results demonstrate the ability of miR-124 and miR-16 to significantly reduce lipid accumulation and expression of key pathogenic genes associated with NAFLD through direct targeting. Though this requires further in vivo investigation.


Azo Compounds , MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Oleic Acid/metabolism , Oleic Acid/pharmacology , Oleic Acid/therapeutic use , Toll-Like Receptor 4 , Lipid Metabolism/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism
8.
Int J Mol Sci ; 25(4)2024 Feb 18.
Article En | MEDLINE | ID: mdl-38397086

Dysregulated Alzheimer's disease (AD)-associated protein expression is reported in polycystic ovary syndrome (PCOS), paralleling the expression reported in type 2 diabetes (T2D). We hypothesized, however, that these proteins would not differ between women with non-obese and non-insulin resistant PCOS compared to matched control subjects. We measured plasma amyloid-related proteins levels (Amyloid-precursor protein (APP), alpha-synuclein (SNCA), amyloid P-component (APCS), Pappalysin (PAPPA), Microtubule-associated protein tau (MAPT), apolipoprotein E (apoE), apoE2, apoE3, apoE4, Serum amyloid A (SAA), Noggin (NOG) and apoA1) in weight and aged-matched non-obese PCOS (n = 24) and control (n = 24) women. Dementia-related proteins fibronectin (FN), FN1.3, FN1.4, Von Willebrand factor (VWF) and extracellular matrix protein 1 (ECM1) were also measured. Protein levels were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. Only APCS differed between groups, being elevated in non-obese PCOS women (p = 0.03) relative to the non-obese control women. This differed markedly from the elevated APP, APCS, ApoE, FN, FN1.3, FN1.4 and VWF reported in obese women with PCOS. Non-obese, non-insulin resistant PCOS subjects have a lower AD-associated protein pattern risk profile versus obese insulin resistant PCOS women, and are not dissimilar to non-obese controls, indicating that lifestyle management to maintain optimal body weight could be beneficial to reduce the long-term AD-risk in women with PCOS.


Dementia , Diabetes Mellitus, Type 2 , Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Aged , Polycystic Ovary Syndrome/metabolism , Cross-Sectional Studies , von Willebrand Factor , Diabetes Mellitus, Type 2/complications , Obesity/complications , Apolipoproteins E/genetics , Dementia/complications , Body Mass Index , Extracellular Matrix Proteins
9.
Diabetes Metab Syndr ; 18(2): 102949, 2024 Feb.
Article En | MEDLINE | ID: mdl-38308863

AIMS: In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications. METHODS: Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI. RESULTS: Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/ß-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI. CONCLUSION: Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.


Brain Injuries, Traumatic , Sodium-Glucose Transporter 2 Inhibitors , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Inflammation/complications , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism
10.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article En | MEDLINE | ID: mdl-38255975

Polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disease in females of reproductive age, affecting 4-20% of pre-menopausal women worldwide. MicroRNAs (miRNAs) are endogenous, single-stranded, non-coding, regulatory ribonucleic acid molecules found in eukaryotic cells. Abnormal miRNA expression has been associated with several diseases and could possibly explain their underlying pathophysiology. MiRNAs have been extensively studied for their potential diagnostic, prognostic, and therapeutic uses in many diseases, such as type 2 diabetes, obesity, cardiovascular disease, PCOS, and endometriosis. In women with PCOS, miRNAs were found to be abnormally expressed in theca cells, follicular fluid, granulosa cells, peripheral blood leukocytes, serum, and adipose tissue when compared to those without PCOS, making miRNAs a useful potential biomarker for the disease. Key pathways involved in PCOS, such as folliculogenesis, steroidogenesis, and cellular adhesion, are regulated by miRNA. This also highlights their importance as potential prognostic markers. In addition, recent evidence suggests a role for miRNAs in regulating the circadian rhythm (CR). CR is crucial for regulating reproduction through the various functions of the hypothalamic-pituitary-gonadal (HPG) axis and the ovaries. A disordered CR affects reproductive outcomes by inducing insulin resistance, oxidative stress, and systemic inflammation. Moreover, miRNAs were demonstrated to interact with lncRNA and circRNAs, which are thought to play a role in the pathogenesis of PCOS. This review discusses what is currently understood about miRNAs in PCOS, the cellular pathways involved, and their potential role as biomarkers and therapeutic targets.


Diabetes Mellitus, Type 2 , MicroRNAs , Polycystic Ovary Syndrome , RNA, Long Noncoding , Humans , Female , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Polycystic Ovary Syndrome/genetics
11.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article En | MEDLINE | ID: mdl-38256230

Polycystic ovary syndrome (PCOS) is the most common endocrine condition in women of reproductive age, and several risk factors found in PCOS are associated with an increased risk of Alzheimer's disease (AD). Proteins increased in AD have been reported to include fibronectin (FN) fragments 3 and 4 (FN1.3 and FN1.4, respectively) and ApoE. We hypothesized that Alzheimer-related proteins would be dysregulated in PCOS because of associated insulin resistance and obesity. In this comparative cross-sectional analysis, aptamer-based SomaScan proteomic analysis for the detection of plasma Alzheimer-related proteins was undertaken in a PCOS biobank of 143 women with PCOS and 97 control women. Amyloid precursor protein (APP) (p < 0.05) and amyloid P-component (APCS) (p < 0.001) were elevated in PCOS, while alpha-synuclein (SNCA) (p < 0.05) was reduced in PCOS. Associations with protective heat shock proteins (HSPs) showed that SNCA positively correlated with HSP90 (p < 0.0001) and HSP60 (p < 0.0001) in both the PCOS and control women. Correlations with markers of inflammation showed that APCS correlated with interleukin 6 (IL6) (p = 0.04), while Apolipoprotein (Apo) E3 correlated with TNF-alpha (p = 0.02). FN, FN1.3, FN1.4 and ApoE were all elevated significantly (p < 0.05). An AD-associated protein pattern with elevated FN, FN1.3, FN1.4 and ApoE was found in PCOS, in addition to elevated APP and reduced SNCA, which was the same as reported for type 2 diabetes (T2D) with, additionally, an elevation in APCS. With the AD biomarker pattern in PCOS being very similar to that in T2D, where there is an association between AD and T2D, this suggests that larger prospective cohort studies are needed in women with PCOS to determine if there is a causal association with AD.


Alzheimer Disease , Diabetes Mellitus, Type 2 , Polycystic Ovary Syndrome , Humans , Female , Cross-Sectional Studies , Prospective Studies , Proteomics , Apolipoproteins E , Amyloid beta-Protein Precursor , Apolipoprotein E3
12.
Cell Biochem Biophys ; 2024 Jan 06.
Article En | MEDLINE | ID: mdl-38183601

Ferroptosis is a recently identified form of cell death characterized by iron accumulation and lipid peroxidation. Unlike apoptosis, necrosis, and autophagy, ferroptosis operates through a distinct molecular pathway. Curcumin, derived from turmeric rhizomes, is a natural compound with diverse therapeutic benefits, including neuroprotective, anti-metabolic syndrome, anti-inflammatory, and anti-cancer properties. Growing evidence suggests that curcumin possesses both pro-oxidant and antioxidant properties, which can vary depending on the cell type. In this review, we explore the relationship between the effects of curcumin and the molecular mechanisms underlying the ferroptosis signaling pathway, drawing from current in vivo and in vitro research. Curcumin has been found to induce ferroptosis in cancer cells while acting as an inhibitor of ferroptosis in tissue injuries. Notably, curcumin treatment leads to alterations in key ferroptosis markers, underscoring its significant impact on this process. Nonetheless, further research focused on elucidating this important attribute of turmeric is crucial for advancing disease treatment.

13.
Chemosphere ; 349: 140894, 2024 Feb.
Article En | MEDLINE | ID: mdl-38070612

INTRODUCTION: Evidence suggests that endocrine disrupting chemicals (EDCs), commonly used in plastics and personal care products, may be associated with reduced levels of vitamin D. Therefore, this study examined the relationship between phthalate metabolites, 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan; TCS) and bisphenols (BPs) with vitamin D3 (25(OH)D3) and active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and their relationship to calcium homeostasis. METHODS: 57 female participants (age 31.8 ± 4.6 years; BMI 25.6 ± 3.7 kg/m2) were analyzed for urinary levels of phthalate metabolites, TCS and BPs, and serum levels of 25(OH)D3 and 1,25(OH)2D3, determined by isotope-dilution liquid chromatography tandem mass spectrometry. Serum calcium/calmodulin-dependent (CaM) associated proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan. RESULTS: In the study cohort, 25(OH)D3 and 1,25(OH)2D3 levels were 22.9 ± 11.2 ng/mL and 0.05 ± 0.02 ng/mL, respectively: mono-3-carboxypropyl-phthalate (MCPP) correlated negatively with 25(OH)D3 (ρ = -0.53, p = 0.01). 28 of the 57 women recruited were 25(OH)D3 deficient, <20 ng/mL (50 nmol/L): in this group, mono-iso-butylphthalate (MiBP) and mono-butylphthalate (MBP) negatively correlated with 25(OH)D3; (ρ = -0.47, p = 0.049) and (ρ = -0.64, p = 0.005), respectively. EDCs did not correlate with 1,25(OH)2D3, measures of renal function or CaM proteins. CONCLUSION: These putative data indicate that MCPP is related to 25(OH)D3, while MiBP and MBP were related to vitamin D deficiency; however, no correlations were observed with TCS and BPs. No phthalate metabolites correlated with 1,25(OH)2D3, CaM associated proteins or renal function, suggesting that effects occur earlier in the vitamin D pathway and not through modulation of cellular calcium flux. The observed correlations are surprisingly strong compared to other predictors of 25(OH)D3, and larger studies adjusting for potential confounders are warranted.


Endocrine Disruptors , Triclosan , Humans , Female , Adult , Pilot Projects , Calcium , Vitamin D , Vitamins
14.
Curr Protein Pept Sci ; 25(1): 59-70, 2024.
Article En | MEDLINE | ID: mdl-37608655

Frequent exposure to various external and internal adverse forces (stresses) disrupts cell protein homeostasis through endoplasmic reticulum (ER) capacity saturation. This process leads to the unfolded protein response (UPR), which aims to re-establish/maintain optimal cellular equilibrium. This complex mechanism is involved in the pathogenesis of various disorders, such as metabolic syndrome, fibrotic diseases, neurodegeneration, and cancer, by altering cellular metabolic changes integral to activating the hepatic stellate cells (HSCs). The development of hepatic fibrosis is one of the consequences of UPR activation. Therefore, novel therapies that target the UPR pathway effectively and specifically are being studied. This article covers the involvement of the UPR signaling pathway in cellular damage in liver fibrosis. Investigating the pathogenic pathways related to the ER/UPR stress axis that contribute to liver fibrosis can help to guide future drug therapy approaches.


Liver Cirrhosis , Unfolded Protein Response , Humans , Liver Cirrhosis/pathology , Endoplasmic Reticulum Stress/physiology , Signal Transduction , Stem Cells/metabolism
15.
Diabet Med ; 41(1): e15240, 2024 Jan.
Article En | MEDLINE | ID: mdl-37833064

Diabetes is a chronic disorder with rapidly increasing prevalence that is a major global issue of our current era. There are two major types of diabetes. Polygenic forms of diabetes include type 1 diabetes (T1D) and type 2 diabetes (T2D) and its monogenic forms are maturity-onset diabetes of the young (MODY) and neonatal diabetes mellitus (NDM). There are no permanent therapeutic approaches for diabetes and current therapies rely on regular administration of various drugs or insulin injection. Recently, gene editing strategies have offered new promise for treating genetic disorders. Targeted genome editing is a fast-growing technology, recruiting programmable nucleases to specifically modify target genomic sequences. These targeted nucleases generate double-strand breaks at target regions in the genome, which induce cellular repair pathways including non-homologous end joining (NHEJ) and homology-directed repair (HDR). Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a novel gene-editing system, permitting precise genome modification. CRISPR/Cas9 has great potential for various applications in diabetic research such as gene screening, generation of diabetic animal models and treatment. In this article, gene-editing strategies are summarized with a focus on the CRISPR/Cas9 approach in diabetes research.


CRISPR-Cas Systems , Diabetes Mellitus, Type 2 , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/therapy , Gene Editing , Recombinational DNA Repair , DNA End-Joining Repair
16.
J Infect Public Health ; 17(2): 315-320, 2024 Feb.
Article En | MEDLINE | ID: mdl-38160562

BACKGROUND: Laboratory-based evidence indicates that neutralization of the BA.2 (Omicron) variant by sotrovimab is reduced versus previous SARS-CoV-2 variants. Since there is a lack of real-world data, we investigated whether sotrovimab has reduced clinical efficacy against the BA.2 variant. METHODS: We performed a prospective cohort study using real-world data from 1180 randomly-selected BA.2 variant-infected patients. Follow-up to study endpoints averaged 29 days. For mild cases (not requiring oxygen-supplementation), primary outcomes were requiring O2-supplementation, intensive care unit (ICU) admission or death. For moderate-to-severe COVID-19 cases (requiring oxygen-supplementation other than mechanical ventilation), the primary outcome was ICU admission or death. RESULTS: Patients in the sotrovimab group (n = 569) and control patients (n = 611) were included. Sotrovimab-treated patients versus controls had reduced risk of death (0.4% vs 6.4%, p < 0.001), need for oxygen supplementation (3.5% vs 12.8%, p < 0.001) and ICU admission (0.2% vs 4.9%, p < 0.001). The adjusted-odds ratio for developing any of these outcomes was 0.090 (95% CI 0.049-0.165, p < 0.001). Subgroup analysis of moderate-to-severe sotrovimab-treated patients versus controls revealed reduced mortality (17.7% vs 37.2%, p = 0.006) and ICU admission (0.0% vs 37.2%, p < 0.001). Adjusted-hazards ratio for death or ICU admission was 0.256 (95% CI 0.111-0.593, p < 0.001). CONCLUSION: Sotrovimab was effective in reducing COVID-19 progression risk in high-risk BA.2 variant-infected patients. This finding may alleviate concerns about its clinical efficacy.


Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , COVID-19 , Humans , SARS-CoV-2 , Prospective Studies , Hospitalization , Oxygen
17.
Nitric Oxide ; 143: 16-28, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38141926

The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.


Cardiovascular Diseases , Cardiovascular System , Curcumin , Humans , Curcumin/pharmacology , Nitric Oxide/metabolism , Cardiovascular System/metabolism , Anti-Inflammatory Agents , Antioxidants/pharmacology
18.
Diabetes Metab Syndr ; 18(1): 102934, 2024 Jan.
Article En | MEDLINE | ID: mdl-38154403

BACKGROUND AND AIMS: Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS: PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS: The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION: Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.


Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Animals , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Liver , Glucose , Fibrosis , Sodium , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
19.
Front Endocrinol (Lausanne) ; 14: 1233484, 2023.
Article En | MEDLINE | ID: mdl-37790603

Introduction: Polychlorinated biphenyls (PCBs), organic lipophilic pollutants that accumulate through diet and increase with age, have been associated with polycystic ovary syndrome (PCOS) and shown to affect microRNA (miRNA) expression. This work aimed to determine if PCBs were associated with circulating miRNAs and whether there were any correlations with serum PCB/miRNA levels and hormonal changes. Methods: 29 non-obese PCOS and 29 healthy control women, with similar age and body mass index (BMI), had their serum miRNAs measured together with 7 indicator PCBs (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, PCB180) using high resolution gas chromatography coupled with high resolution mass spectrometry. Results: In the combined study cohort, four miRNAs (hsa-miR-139-5p, hsa-miR-424-5p, hsa-miR-195-5p, hsa-miR-335-5p) correlated with PCBs, but none correlated with metabolic parameters. hsa-miR-335-5p correlated with FSH. When stratified, 25 miRNAs correlated with PCBs in controls compared to only one (hsa-miR-193a-5p) in PCOS; none of these miRNAs correlated with the metabolic parameters of BMI, insulin resistance, or inflammation (C-reactive protein, CRP). However, of these 25 miRNAs in controls, hsa-miR-26a-5p, hsa-miR-193a-5p, hsa-miR-2110 and hsa-miR-195-5p positively correlated with luteinizing hormone (LH), hsa-miR-99b-5p and hsa-miR-146b-5p correlated with estradiol, hsa-miR-193a-5p correlated with progesterone, hsa-miR-195-5p correlated with follicle stimulating hormone (FSH), and hsa-miR-139-5p and hsa-miR-146b-5p negatively correlated with anti-müllerian hormone (AMH) (all p<0.05). hsa-miR-193a-5p in PCOS cases correlated with estradiol. Conclusion: In this cohort of women, with no difference in age and BMI, and with similar PCB levels, the miRNAs correlating to PCBs associated with menstrual cycle factors in healthy menstruating controls versus the anovulatory PCOS subjects. The PCB-associated miRNAs did not correlate with non-reproductive hormonal and metabolic parameters. This suggests that PCB effects on miRNAs may result in changes to the hypothalamo-ovarian axis that may thus affect fertility.


Circulating MicroRNA , MicroRNAs , Polychlorinated Biphenyls , Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/complications , MicroRNAs/genetics , Follicle Stimulating Hormone , Estradiol
20.
Cell Biochem Funct ; 41(8): 959-977, 2023 Dec.
Article En | MEDLINE | ID: mdl-37787641

Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.


Graft Rejection , Transplantation Tolerance , Graft Rejection/prevention & control , Immunosuppression Therapy , Apoptosis
...