Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
PLoS Negl Trop Dis ; 16(2): e0010166, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35171909

RESUMEN

The tropism of Zika virus (ZIKV) has been described in the nervous system, blood, placenta, thymus, and skeletal muscle. We investigated the mechanisms of skeletal muscle susceptibility to ZIKV using an in vitro model of human skeletal muscle myogenesis, in which myoblasts differentiate into myotubes. Myoblasts were permissive to ZIKV infection, generating productive viral particles, while myotubes controlled ZIKV replication. To investigate the underlying mechanisms, we used gene expression profiling. First, we assessed gene changes in myotubes compared with myoblasts in the model without infection. As expected, we observed an increase in genes and pathways related to the contractile muscle system in the myotubes, a reduction in processes linked to proliferation, migration and cytokine production, among others, confirming the myogenic capacity of our system in vitro. A comparison between non-infected and infected myoblasts revealed more than 500 differentially expressed genes (DEGs). In contrast, infected myotubes showed almost 2,000 DEGs, among which we detected genes and pathways highly or exclusively expressed in myotubes, including those related to antiviral and innate immune responses. Such gene modulation could explain our findings showing that ZIKV also invades myotubes but does not replicate in these differentiated cells. In conclusion, we showed that ZIKV largely (but differentially) disrupts gene expression in human myoblasts and myotubes. Identifying genes involved in myotube resistance can shed light on potential antiviral mechanisms against ZIKV infection.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Antivirales/metabolismo , Femenino , Expresión Génica , Humanos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Embarazo , Virus Zika/fisiología , Infección por el Virus Zika/genética
3.
Front Physiol ; 11: 573347, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071827

RESUMEN

Growing evidence demonstrates a continuous interaction between the immune system and the skeletal muscle in inflammatory diseases of different pathogenetic origins, in dystrophic conditions such as Duchenne Muscular Dystrophy as well as during normal muscle regeneration. Although one component of the innate immunity, the macrophage, has been extensively studied both in disease conditions and during cell or gene therapy strategies aiming at restoring muscular functions, much less is known about dendritic cells and their primary immunological targets, the T lymphocytes. This review will focus on the dendritic cells and T lymphocytes (including effector and regulatory T-cells), emphasizing the potential cross talk between these cell types and their influence on the structure and function of skeletal muscle.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31828046

RESUMEN

Toxoplasma gondii is the causative agent of toxoplasmosis, a parasitic disease with a wide global prevalence. The parasite forms cysts in skeletal muscle cells and neurons, although no evident association with inflammatory infiltrates has been typically found. We studied the impact of T. gondii infection on the myogenic program of mouse skeletal muscle cells (SkMC). The C2C12 murine myoblast cell line was infected with T. gondii tachyzoites (ME49 strain) for 24 h followed by myogenic differentiation induction. T. gondii infection caused a general decrease in myotube differentiation, fusion and maturation, along with decreased expression of myosin heavy chain. The expression of Myogenic Regulatory Factors Myf5, MyoD, Mrf4 and myogenin was modulated by the infection. Infected cultures presented increased proliferation rates, as assessed by Ki67 immunostaining, whereas neither host cell lysis nor apoptosis were significantly augmented in infected dishes. Cytokine Bead Array indicated that IL-6 and MCP-1 were highly increased in the medium from infected cultures, whereas TGF-ß1 was consistently decreased. Inhibition of the IL-6 receptor or supplementation with recombinant TGF-ß failed to reverse the deleterious effects caused by the infection. However, conditioned medium from infected cultures inhibited myogenesis in C2C12 cells. Activation of the Wnt/ß-catenin pathway was impaired in T. gondii-infected cultures. Our data indicate that T. gondii leads SkMCs to a pro-inflammatory phenotype, leaving cells unresponsive to ß-catenin activation, and inhibition of the myogenic differentiation program. Such deregulation may suggest muscle atrophy and molecular mechanisms similar to those involved in myositis observed in human patients.


Asunto(s)
Interacciones Huésped-Patógeno , Desarrollo de Músculos , Factores Reguladores Miogénicos/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/metabolismo , Animales , Biomarcadores , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Ratones , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/parasitología , Factores Reguladores Miogénicos/genética , Toxoplasmosis/parasitología , Vía de Señalización Wnt
5.
Cell Death Dis ; 9(5): 551, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29748534

RESUMEN

Idiopathic Inflammatory Myopathies (IIMs) are a heterogeneous group of autoimmune diseases affecting skeletal muscle tissue homeostasis. They are characterized by muscle weakness and inflammatory infiltration with tissue damage. Amongst the cells in the muscle inflammatory infiltration, dendritic cells (DCs) are potent antigen-presenting and key components in autoimmunity exhibiting an increased activation in inflamed tissues. Since, the IIMs are characterized by the focal necrosis/regeneration and muscle atrophy, we hypothesized that DCs may play a role in these processes. Due to the absence of a reliable in vivo model for IIMs, we first performed co-culture experiments with immature DCs (iDC) or LPS-activated DCs (actDC) and proliferating myoblasts or differentiating myotubes. We demonstrated that both iDC or actDCs tightly interact with myoblasts and myotubes, increased myoblast proliferation and migration, but inhibited myotube differentiation. We also observed that actDCs increased HLA-ABC, HLA-DR, VLA-5, and VLA-6 expression and induced cytokine secretion on myoblasts. In an in vivo regeneration model, the co-injection of human myoblasts and DCs enhanced human myoblast migration, whereas the absolute number of human myofibres was unchanged. In conclusion, we suggest that in the early stages of myositis, DCs may play a crucial role in inducing muscle-damage through cell-cell contact and inflammatory cytokine secretion, leading to muscle regeneration impairment.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Dendríticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Adulto , Antígenos de Diferenciación/biosíntesis , Células Dendríticas/citología , Femenino , Humanos , Recién Nacido , Lipopolisacáridos/farmacología , Masculino , Persona de Mediana Edad , Mioblastos Esqueléticos/citología
6.
Skelet Muscle ; 7(1): 20, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29017538

RESUMEN

BACKGROUND: The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. METHODS: We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. RESULTS: We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. CONCLUSIONS: We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving the migration of donor cells within the host tissue, a main issue regarding this approach.


Asunto(s)
Movimiento Celular , Matriz Extracelular/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Sistema de Señalización de MAP Quinasas , Metaloproteinasas de la Matriz/metabolismo , Mioblastos/metabolismo , Células Cultivadas , Humanos , Integrina alfa5beta1/metabolismo , Metaloproteinasas de la Matriz/genética , Mioblastos/efectos de los fármacos , Mioblastos/fisiología , Proteínas Proto-Oncogénicas c-met/metabolismo , Receptores de Laminina/metabolismo
7.
PLoS One ; 9(8): e103990, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25105415

RESUMEN

Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Músculo Esquelético/embriología , Mioblastos/metabolismo , Análisis de Varianza , Animales , Brefeldino A/metabolismo , Embrión de Pollo , Microscopía por Crioelectrón , Vesículas Citoplasmáticas/metabolismo , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Inmunohistoquímica , Ratones , Microscopía Electrónica de Transmisión , Músculo Esquelético/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad de la Especie
8.
J Clin Virol ; 57(1): 70-6, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23375238

RESUMEN

BACKGROUND: The Human T-cell Leukemia Virus type 1 (HTLV-1) is the causative agent of several inflammatory diseases, including HTLV-1-associated inflammatory myopathies (HAIM). Little is known about the virological and immunological characteristics of this viral disease. OBJECTIVES: To characterize the histological and virological features of HAIM patients, in order to better understand the pathogenetic mechanisms and unravel new biological markers of this disease. STUDY DESIGN: We conducted a retrospective study on 13 patients with HAIM, based on blood and muscle samples. We included blood samples from HTLV-1-infected individuals without myopathy as controls. Muscle biopsies were used for a broad immunohistological evaluation of tissue damage and inflammation, as well as identification of infected cells through in situ hybridization. DNA extracted from patients' PBMC was used to identify the virus genotype by sequencing and to assess the proviral load by quantitative PCR. Anti-viral antibodies in plasma samples were titrated by indirect immunofluorescence. RESULTS: Patients originate from HTLV-1 endemic areas, the West Indies and West Africa. Histological alterations and inflammation in patients muscles were mostly moderate, with classical features of idiopathic myositis and rare HTLV-1-infected infiltrating cells. In all patients, HTLV-1 belonged to the A subtype, transcontinental subgroup. Anti-HTLV-1 antibodies titers were high, but the proviral load was not elevated compared to asymptomatic HTLV-1 carriers. CONCLUSION: We show here that muscle inflammation is moderate in HAIM, and accompanied by a low HTLV-1 proviral load, suggesting that the pathogenetic events do not exactly mirror those of other HTLV-1-associated inflammatory diseases.


Asunto(s)
Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/aislamiento & purificación , Inflamación/virología , Miositis/virología , Adulto , África Occidental , Anciano , Anciano de 80 o más Años , Femenino , Virus Linfotrópico T Tipo 1 Humano/clasificación , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Provirus/aislamiento & purificación , ARN Mensajero/análisis , ARN Viral/análisis , Estudios Retrospectivos , Estadísticas no Paramétricas , Carga Viral , Indias Occidentales
9.
Eur J Pharmacol ; 694(1-3): 1-12, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-22921450

RESUMEN

Skeletal myogenesis comprises myoblast replication and differentiation into striated multinucleated myotubes. Agents that interfere with myoblast replication are important tools for the understanding of myogenesis. Recently, we showed that cholesterol depletion by methyl-ß-cyclodextrin (MCD) enhances the differentiation step in chick-cultured myogenic cells, involving the activation of the Wnt/ß-catenin signaling pathway. However, the effects of cholesterol depletion on myoblast replication have not been carefully studied. Here we show that MCD treatment increases cell proliferation in primary chick myogenic cell cultures. Treatment of myogenic cells with the anti-mitotic reagent cytosine arabinoside, immediately following cholesterol depletion, blocks the MCD-induced effects on proliferation. Cholesterol depletion induced an increase in the number of desmin-positive mononucleated cells, and an increase in desmin expression. MCD induces an increase in the expression of the cell cycle regulator p53 and the master switch gene MyoD1. Treatment with BIO, a specific inhibitor of GSK3ß, induced effects similar to MCD on cell proliferation; while treatment with Dkk1, a specific inhibitor of the Wnt/ß-catenin pathway, neutralized the effects of MCD. These findings indicate that rapid changes in the cholesterol content in cell membranes of myoblasts can induce cell proliferation, possibly by the activation of the Wnt/ß-catenin signaling pathway.


Asunto(s)
Colesterol/deficiencia , Desmina/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , beta-Ciclodextrinas/farmacología , Animales , Bromodesoxiuridina/metabolismo , Recuento de Células , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Proteína MioD/metabolismo , Mioblastos/efectos de los fármacos , Especificidad de Órganos , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Wnt/metabolismo
10.
J Neuroimmunol ; 223(1-2): 128-30, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20382434

RESUMEN

The expression and function of integrin-type extracellular matrix receptors, VLA-4 and VLA-5, and laminin receptor VLA-6 on the surface of CD3(+)CD4(+) and CD3(+)CD8(+) defined T cell populations was evaluated in the blood of Duchenne muscular dystrophy (DMD) patients and healthy individuals. Both the number of CD4(+) and CD8(+) T cell subsets expressing VLA-4 or VLA-5 and the fibronectin-driven T cell migration was significantly higher in DMD patients. These data indicate that interactions of VLA-4 and/or VLA-5 with fibronectin may drive T lymphocytes to specific niches within muscle, contributing to tissue damage and fibrosis in DMD patients.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Integrinas/biosíntesis , Músculo Esquelético/inmunología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/fisiopatología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Adolescente , Movimiento Celular/genética , Movimiento Celular/inmunología , Niño , Preescolar , Humanos , Inmunofenotipificación , Cadenas alfa de Integrinas/biosíntesis , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/fisiología , Integrina alfa5beta1/biosíntesis , Integrina alfa5beta1/genética , Integrina alfa5beta1/fisiología , Integrina alfa6beta1/biosíntesis , Integrina alfa6beta1/genética , Integrina alfa6beta1/fisiología , Integrinas/genética , Integrinas/fisiología , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Subgrupos de Linfocitos T/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA