Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Viruses ; 16(5)2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793639

RESUMEN

African Swine Fever Virus (ASFV) is a large dsDNA virus that encodes at least 150 proteins. The complexity of ASFV and lack of knowledge of effector immune functions and protective antigens have hindered the development of safe and effective ASF vaccines. In this study, we constructed four Orf virus recombinant vectors expressing individual ASFV genes B602L, -CP204L, E184L, and -I73R (ORFVΔ121-ASFV-B602L, -CP204L, -E184L, and -I73R). All recombinant viruses expressed the heterologous ASFV proteins in vitro. We then evaluated the immunogenicity of the recombinants by immunizing four-week-old piglets. In two independent animal studies, we observed high antibody titers against ASFV p30, encoded by CP204L gene. Using Pepscan ELISA, we identified a linear B-cell epitope of 12 amino acids in length (Peptide 15) located in an exposed loop region of p30 as an immunodominant ASFV epitope. Additionally, antibodies elicited against ASFV p30 presented antibody-dependent cellular cytotoxicity (ADCC) activity. These results underscore the role of p30 on antibody responses elicited against ASFV and highlight an important functional epitope that contributes to p30-specific antibody responses.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Anticuerpos Antivirales , Citotoxicidad Celular Dependiente de Anticuerpos , Epítopos de Linfocito B , Epítopos Inmunodominantes , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Animales , Porcinos , Anticuerpos Antivirales/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/genética , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Proteínas Virales/inmunología , Proteínas Virales/genética , Vacunas Virales/inmunología , Vacunas Virales/genética
2.
Proc Natl Acad Sci U S A ; 120(6): e2215067120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36719912

RESUMEN

The spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (WTD) and its ability to transmit from deer to deer raised concerns about the role of WTD in the epidemiology and ecology of the virus. Here, we present a comprehensive cross-sectional study assessing the prevalence, genetic diversity, and evolution of SARS-CoV-2 in WTD in the State of New York (NY). A total of 5,462 retropharyngeal lymph node samples collected from free-ranging hunter-harvested WTD during the hunting seasons of 2020 (Season 1, September to December 2020, n = 2,700) and 2021 (Season 2, September to December 2021, n = 2,762) were tested by SARS-CoV-2 real-time RT-PCR (rRT-PCR). SARS-CoV-2 RNA was detected in 17 samples (0.6%) from Season 1 and in 583 samples (21.1%) from Season 2. Hotspots of infection were identified in multiple confined geographic areas of NY. Sequence analysis of SARS-CoV-2 genomes from 164 samples demonstrated the presence of multiple SARS-CoV-2 lineages and the cocirculation of three major variants of concern (VOCs) (Alpha, Gamma, and Delta) in WTD. Our analysis suggests the occurrence of multiple spillover events (human to deer) of the Alpha and Delta lineages with subsequent deer-to-deer transmission and adaptation of the viruses. Detection of Alpha and Gamma variants in WTD long after their broad circulation in humans in NY suggests that WTD may serve as a wildlife reservoir for VOCs no longer circulating in humans. Thus, implementation of continuous surveillance programs to monitor SARS-CoV-2 dynamics in WTD is warranted, and measures to minimize virus transmission between humans and animals are urgently needed.


Asunto(s)
COVID-19 , Ciervos , Animales , Humanos , Animales Salvajes , SARS-CoV-2/genética , Estudios Transversales , ARN Viral/genética , COVID-19/epidemiología
3.
Front Vet Sci ; 9: 1073919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532355

RESUMEN

Co-infections of avian species with different RNA viruses and pathogenic bacteria are often misdiagnosed or incompletely characterized using targeted diagnostic methods, which could affect the accurate management of clinical disease. A non-targeted sequencing approach with rapid and precise characterization of pathogens should help respiratory disease management by providing a comprehensive view of the causes of disease. Long-read portable sequencers have significant potential advantages over established short-read sequencers due to portability, speed, and lower cost. The applicability of short reads random sequencing for direct detection of pathogens in clinical poultry samples has been previously demonstrated. Here we demonstrate the feasibility of long read random sequencing approaches to identify disease agents in clinical samples. Experimental oropharyngeal swab samples (n = 12) from chickens infected with infectious bronchitis virus (IBV), avian influenza virus (AIV) and Mycoplasma synoviae (MS) and field-collected clinical oropharyngeal swab samples (n = 11) from Kenyan live bird markets previously testing positive for Newcastle disease virus (NDV) were randomly sequenced on the MinION platform and results validated by comparing to real time PCR and short read random sequencing in the Illumina MiSeq platform. In the swabs from experimental infections, each of three agents in every RT-qPCR-positive sample (Ct range 19-34) was detectable within 1 h on the MinION platform, except for AIV one agent in one sample (Ct = 36.21). Nine of 12 IBV-positive samples were assigned genotypes within 1 h, as were five of 11 AIV-positive samples. MinION relative abundances of the test agent (AIV, IBV and MS) were highly correlated with RT-qPCR Ct values (R range-0.82 to-0.98). In field-collected clinical swab samples, NDV (Ct range 12-37) was detected in all eleven samples within 1 h of MinION sequencing, with 10 of 11 samples accurately genotyped within 1 h. All NDV-positive field samples were found to be co-infected with one or more additional respiratory agents. These results demonstrate that MinION sequencing can provide rapid, and sensitive non-targeted detection and genetic characterization of co-existing respiratory pathogens in clinical samples with similar performance to the Illumina MiSeq.

4.
Appl Environ Microbiol ; 88(11): e0046622, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35612300

RESUMEN

Avian paramyxoviruses (APMVs) (subfamily Avulavirinae) have been isolated from over 200 species of wild and domestic birds around the world. The International Committee on Taxonomy of Viruses (ICTV) currently defines 22 different APMV species, with Avian orthoavulavirus 1 (whose viruses are designated APMV-1) being the most frequently studied due to its economic burden to the poultry industry. Less is known about other APMV species, including limited knowledge on the genetic diversity in wild birds, and there is a paucity of public whole-genome sequences for APMV-2 to -22. The goal of this study was to use MinION sequencing to genetically characterize APMVs isolated from wild bird swab samples collected during 2016 to 2018 in the United States. Multiplexed MinION libraries were prepared using a random strand-switching approach using 37 egg-cultured, influenza-negative, hemagglutination-positive samples. Forty-one APMVs were detected, with 37 APMVs having complete polymerase coding sequences allowing for species identification using ICTV's current Paramyxoviridae phylogenetic methodology. APMV-1, -4, -6, and -8 viruses were classified, one putative novel species (Avian orthoavulavirus 23) was identified from viruses isolated in this study, two putative new APMV species (Avian metaavulavirus 24 and 27) were identified from viruses isolated in this study and from retrospective GenBank sequences, and two putative new APMV species (Avian metaavulavirus 25 and 26) were identified solely from retrospective GenBank sequences. Furthermore, coinfections of APMVs were identified in four samples. The potential limitations of the branch length being the only species identification criterion and the potential benefit of a group pairwise distance analysis are discussed. IMPORTANCE Most species of APMVs are understudied and/or underreported, and many species were incidentally identified from asymptomatic wild birds; however, the disease significance of APMVs in wild birds is not fully determined. The rapid rise in high-throughput sequencing coupled with avian influenza surveillance programs have identified 12 different APMV species in the last decade and have challenged the resolution of classical serological methods to identify new viral species. Currently, ICTV's only criterion for Paramyxoviridae species classification is the requirement of a branch length of >0.03 using a phylogenetic tree constructed from polymerase (L) amino acid sequences. The results from this study identify one new APMV species, propose four additional new APMV species, and highlight that the criterion may have insufficient resolution for APMV species demarcation and that refinement or expansion of this criterion may need to be established for Paramyxoviridae species identification.


Asunto(s)
Animales Salvajes , Infecciones por Avulavirus , Avulavirus , Enfermedades de las Aves , Animales , Animales Salvajes/virología , Avulavirus/genética , Avulavirus/aislamiento & purificación , Infecciones por Avulavirus/epidemiología , Infecciones por Avulavirus/veterinaria , Infecciones por Avulavirus/virología , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/virología , Aves , Filogenia , Estudios Retrospectivos , Vigilancia de Guardia/veterinaria , Estados Unidos/epidemiología
5.
J Vet Diagn Invest ; 33(2): 179-190, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32133932

RESUMEN

Infectious bronchitis (IB) causes significant economic losses in the global poultry industry. Control of IB is hindered by the genetic diversity of the causative agent, infectious bronchitis virus (IBV), which has led to the emergence of several serotypes that lack complete serologic cross-protection. Although serotyping requires immunologic characterization, genotyping is an efficient means to identify IBVs detected in samples. Sanger sequencing of the S1 subunit of the spike gene is currently used to genotype IBV; however, the universal S1 PCR was created to work from cultured IBV, and it is inefficient at detecting multiple viruses in a single sample. We describe herein a MinION-based, amplicon-based sequencing (AmpSeq) method that genetically categorized IBV from clinical samples, including samples with multiple IBVs. Total RNA was extracted from 15 tracheal scrapings and choanal cleft swab samples, randomly reverse transcribed, and PCR amplified using modified S1-targeted primers. Amplicons were barcoded to allow for pooling of samples, processed per manufacturer's instructions into a 1D MinION sequencing library, and then sequenced on the MinION. The AmpSeq method detected IBV in 13 of 14 IBV-positive samples. AmpSeq accurately detected and genotyped both IBV lineages in 3 of 5 samples containing 2 IBV lineages. Additionally, 1 sample contained 3 IBV lineages, and AmpSeq accurately detected 2 of the 3 lineages. Strain identification, including detection of different IBVs from the same lineage, was also possible with this AmpSeq method. Our results demonstrate the feasibility of using MinION-based AmpSeq for rapid and accurate identification and lineage typing of IBV from oral swab samples.


Asunto(s)
Pollos , Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Enfermedades de las Aves de Corral/diagnóstico , Análisis de Secuencia de ARN/veterinaria , Glicoproteína de la Espiga del Coronavirus/análisis , Animales , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Enfermedades de las Aves de Corral/virología , Análisis de Secuencia de ARN/métodos
6.
BMC Vet Res ; 15(1): 317, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484573

RESUMEN

BACKGROUND: Newcastle disease (ND), which is caused by infections of poultry species with virulent strains of Avian orthoavulavirus-1, also known as avian paramyxovirus 1 (APMV-1), and formerly known as Newcastle disease virus (NDV), may cause neurological signs and encephalitis. Neurological signs are often the only clinical signs observed in birds infected with neurotropic strains of NDV. Experimental infections have shown that the replication of virulent NDV (vNDV) strains is in the brain parenchyma and is possibly confined to neurons and ependymal cells. However, little information is available on the ability of vNDV strains to infect subset of glial cells (astrocytes, oligodendrocytes, and microglia). The objective of this study was to evaluate the ability of NDV strains of different levels of virulence to infect a subset of glial cells both in vitro and in vivo. Thus, neurons, astrocytes and oligodendrocytes from the brains of day-old White Leghorn chickens were harvested, cultured, and infected with both non-virulent (LaSota) and virulent, neurotropic (TxGB) NDV strains. To confirm these findings in vivo, the tropism of three vNDV strains with varying pathotypes (SA60 [viscerotropic], TxGB [neurotropic], and Tx450 [mesogenic]) was assessed in archived formalin-fixed material from day-old chicks inoculated intracerebrally. RESULTS: Double immunofluorescence for NDV nucleoprotein and cellular markers showed that both strains infected at least 20% of each of the cell types (neurons, astrocytes, and oligodendrocytes). At 24 h post-inoculation, TxGB replicated significantly more than LaSota. Double immunofluorescence (DIFA) with markers for neurons, astrocytes, microglia, and NDV nucleoprotein detected the three strains in all three cell types at similar levels. CONCLUSION: These data indicate that similar to other paramyxoviruses, neurons and glial cells (astrocytes, oligodendrocytes, and microglia) are susceptible to vNDV infection, and suggest that factors other than cellular tropism are likely the major determinant of the neurotropic phenotype.


Asunto(s)
Pollos , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/patogenicidad , Enfermedades de las Aves de Corral/virología , Tropismo , Animales , Astrocitos/virología , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Microglía/virología , Neuronas/virología , Oligodendroglía/virología , Especificidad de la Especie , Virulencia , Replicación Viral
7.
Virol J ; 15(1): 179, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30466441

RESUMEN

BACKGROUND: Newcastle disease (ND) outbreaks are global challenges to the poultry industry. Effective management requires rapid identification and virulence prediction of the circulating Newcastle disease viruses (NDV), the causative agent of ND. However, these diagnostics are hindered by the genetic diversity and rapid evolution of NDVs. METHODS: An amplicon sequencing (AmpSeq) workflow for virulence and genotype prediction of NDV samples using a third-generation, real-time DNA sequencing platform is described here. 1D MinION sequencing of barcoded NDV amplicons was performed using 33 egg-grown isolates, (15 NDV genotypes), and 15 clinical swab samples collected from field outbreaks. Assembly-based data analysis was performed in a customized, Galaxy-based AmpSeq workflow. MinION-based results were compared to previously published sequences and to sequences obtained using a previously published Illumina MiSeq workflow. RESULTS: For all egg-grown isolates, NDV was detected and virulence and genotype were accurately predicted. For clinical samples, NDV was detected in ten of eleven NDV samples. Six of the clinical samples contained two mixed genotypes as determined by MiSeq, of which the MinION method detected both genotypes in four samples. Additionally, testing a dilution series of one NDV isolate resulted in NDV detection in a dilution as low as 101 50% egg infectious dose per milliliter. This was accomplished in as little as 7 min of sequencing time, with a 98.37% sequence identity compared to the expected consensus obtained by MiSeq. CONCLUSION: The depth of sequencing, fast sequencing capabilities, accuracy of the consensus sequences, and the low cost of multiplexing allowed for effective virulence prediction and genotype identification of NDVs currently circulating worldwide. The sensitivity of this protocol was preliminary tested using only one genotype. After more extensive evaluation of the sensitivity and specificity, this protocol will likely be applicable to the detection and characterization of NDV.


Asunto(s)
Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/virología , Animales , Código de Barras del ADN Taxonómico , Exactitud de los Datos , Variación Genética , Genoma Viral , Nanoporos , Enfermedad de Newcastle/diagnóstico , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Filogenia , Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , ARN Viral/genética , Sensibilidad y Especificidad , Virulencia
8.
Virol J ; 15(1): 9, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29329546

RESUMEN

BACKGROUND: Newcastle disease viruses (NDV) are highly contagious and cause disease in both wild birds and poultry. A pigeon-adapted variant of genotype VI NDV, often termed pigeon paramyxovirus 1, is commonly isolated from columbids in the United States and worldwide. Complete genomic characterization of these genotype VI viruses circulating in wild columbids in the United States is limited, and due to the genetic variability of the virus, failure of rapid diagnostic detection has been reported. Therefore, in this study, formalin-fixed paraffin-embedded (FFPE) samples were subjected to next-generation sequencing (NGS) to identify and characterize these circulating viruses, providing valuable genetic information. NGS enables multiple samples to be deep-sequenced in parallel. When used on FFPE samples, this methodology allows for retrospective studies of infectious organisms. METHODS: FFPE wild pigeon tissue samples (kidney, liver and spleen) from 10 mortality events in the U.S. between 2010 and 2016 were analyzed using NGS to detect and sequence NDV genomes from randomly amplified total RNA. Results were compared to the previously published immunohistochemistry (IHC) results conducted on the same samples. Additionally, phylogenetic analyses were conducted on the complete and partial fusion gene and complete genome coding sequences. RESULTS: Twenty-three out of 29 IHC-positive FFPE pigeon samples were identified as positive for NDV by NGS. Positive samples produced an average genome coverage of 99.6% and an average median depth of 199. A previously described sub-genotype (VIa) and a novel sub-genotype (VIn) of NDV were identified as the causative agent of 10 pigeon mortality events in the U.S. from 2010 to 2016. The distribution of these viruses from the North American lineages match the distribution of the Eurasian collared-doves and rock pigeons in the U.S. CONCLUSIONS: This work reports the first successful evolutionary study using deep sequencing of complete NDV genomes from FFPE samples of wild bird origin. There are at least two distinct U.S. lineages of genotype VI NDV maintained in wild pigeons that are continuously evolving independently from each other and have no evident epidemiological connections to viruses circulating abroad. These findings support the hypothesis that columbids are serving as reservoirs of virulent NDV in the U.S.


Asunto(s)
Columbidae/virología , Evolución Molecular , Variación Genética , Genoma Viral , Genotipo , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Animales , Virus de la Enfermedad de Newcastle/clasificación , Filogenia , Vigilancia en Salud Pública , Estados Unidos/epidemiología , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...