Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8010): 228-234, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447670

RESUMEN

Animals crave sugars because of their energy potential and the pleasurable sensation of tasting sweetness. Yet all sugars are not metabolically equivalent, requiring mechanisms to detect and differentiate between chemically similar sweet substances. Insects use a family of ionotropic gustatory receptors to discriminate sugars1, each of which is selectively activated by specific sweet molecules2-6. Here, to gain insight into the molecular basis of sugar selectivity, we determined structures of Gr9, a gustatory receptor from the silkworm Bombyx mori (BmGr9), in the absence and presence of its sole activating ligand, D-fructose. These structures, along with structure-guided mutagenesis and functional assays, illustrate how D-fructose is enveloped by a ligand-binding pocket that precisely matches the overall shape and pattern of chemical groups in D-fructose. However, our computational docking and experimental binding assays revealed that other sugars also bind BmGr9, yet they are unable to activate the receptor. We determined the structure of BmGr9 in complex with one such non-activating sugar, L-sorbose. Although both sugars bind a similar position, only D-fructose is capable of engaging a bridge of two conserved aromatic residues that connects the pocket to the pore helix, inducing a conformational change that allows the ion-conducting pore to open. Thus, chemical specificity does not depend solely on the selectivity of the ligand-binding pocket, but it is an emergent property arising from a combination of receptor-ligand interactions and allosteric coupling. Our results support a model whereby coarse receptor tuning is derived from the size and chemical characteristics of the pocket, whereas fine-tuning of receptor activation is achieved through the selective engagement of an allosteric pathway that regulates ion conduction.


Asunto(s)
Bombyx , Proteínas de Insectos , Receptores Acoplados a Proteínas G , Azúcares , Gusto , Animales , Regulación Alostérica , Sitios de Unión , Bombyx/metabolismo , Bombyx/química , Microscopía por Crioelectrón , Fructosa/metabolismo , Fructosa/química , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/ultraestructura , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Sorbosa/química , Sorbosa/metabolismo , Especificidad por Sustrato , Azúcares/metabolismo , Azúcares/química , Gusto/fisiología
2.
Nature ; 560(7719): 447-452, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30111839

RESUMEN

The olfactory system must recognize and discriminate amongst an enormous variety of chemicals in the environment. To contend with such diversity, insects have evolved a family of odorant-gated ion channels comprised of a highly conserved co-receptor (Orco) and a divergent odorant receptor (OR) that confers chemical specificity. Here, we present the single-particle cryo-electron microscopy structure of an Orco homomer from the parasitic fig wasp Apocrypta bakeri at 3.5 Å resolution, providing structural insight into this receptor family. Orco possesses a novel channel architecture, with four subunits symmetrically arranged around a central pore that diverges into four lateral conduits that open to the cytosol. The Orco tetramer has few inter-subunit interactions within the membrane and is bound together by a small cytoplasmic anchor domain. The minimal sequence conservation among ORs maps largely to the pore and anchor domain, shedding light on how the architecture of this receptor family accommodates its remarkable sequence diversity and facilitates the evolution of odour tuning.


Asunto(s)
Microscopía por Crioelectrón , Insectos/ultraestructura , Receptores Odorantes/química , Receptores Odorantes/ultraestructura , Secuencias de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Interacciones Hidrofóbicas e Hidrofílicas , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Insectos/química , Insectos/clasificación , Activación del Canal Iónico , Modelos Moleculares , Filogenia , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Receptores Odorantes/metabolismo , Alineación de Secuencia
3.
J Mol Biol ; 427(4): 853-866, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25550198

RESUMEN

The conformational basis for reduced activity of the thermophilic ribonuclease HI enzyme from Thermus thermophilus, compared to its mesophilic homolog from Escherichia coli, is elucidated using a combination of NMR spectroscopy and molecular dynamics (MD) simulations. Explicit-solvent all-atom MD simulations of the two wild-type proteins and an E. coli mutant in which a glycine residue is inserted after position 80 to mimic the T. thermophilus protein reproduce the differences in conformational dynamics determined from (15)N spin-relaxation NMR spectroscopy of three loop regions that surround the active site and contain functionally important residues: the glycine-rich region, the handle region, and the ß5/αE loop. Examination of the MD trajectories indicates that the thermophilic protein samples conformations productive for substrate binding and activity less frequently than the mesophilic enzyme, although these differences may manifest as either increased or decreased relative flexibility of the different regions. Additional MD simulations indicate that mutations increasing activity of the T. thermophilus enzyme at mesophilic temperatures do so by reconfiguring the local environments of the mutated sites to more closely resemble active conformations. Taken together, the results show that both locally increased and decreased flexibility contribute to an overall reduction in activity of T. thermophilus ribonuclease H compared to its mesophilic E. coli homolog.


Asunto(s)
Escherichia coli/enzimología , Ribonucleasa H/ultraestructura , Thermus thermophilus/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Análisis de Componente Principal , Unión Proteica , Conformación Proteica , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Termodinámica
4.
Elife ; 32014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25285449

RESUMEN

Membrane phospholipids can function as potent regulators of ion channel function. This study uncovers and investigates the effect of phosphatidic acid on Kv channel gating. Using the method of reconstitution into planar lipid bilayers, in which protein and lipid components are defined and controlled, we characterize two effects of phosphatidic acid. The first is a non-specific electrostatic influence on activation mediated by electric charge density on the extracellular and intracellular membrane surfaces. The second is specific to the presence of a primary phosphate group, acts only through the intracellular membrane leaflet and depends on the presence of a particular arginine residue in the voltage sensor. Intracellular phosphatidic acid accounts for a nearly 50 mV shift in the midpoint of the activation curve in a direction consistent with stabilization of the voltage sensor's closed conformation. These findings support a novel mechanism of voltage sensor regulation by the signaling lipid phosphatidic acid.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Ácidos Fosfatidicos/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Secuencia de Aminoácidos , Animales , Glicerofosfolípidos/farmacología , Membrana Dobles de Lípidos/metabolismo , Datos de Secuencia Molecular , Fosfatidilcolinas/farmacología , Fosfolipasa D/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Ratas , Alineación de Secuencia
5.
J Mol Biol ; 403(4): 591-606, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20851706

RESUMEN

Voltage-sensor domains (VSDs) are specialized transmembrane segments that confer voltage sensitivity to many proteins such as ion channels and enzymes. The activities of these domains are highly dependent on both the chemical properties and the physical properties of the surrounding membrane environment. To learn about VSD-lipid interactions, we used nuclear magnetic resonance spectroscopy to determine the structure and phospholipid interface of the VSD from the voltage-dependent K(+) channel KvAP (prokaryotic Kv from Aeropyrum pernix). The solution structure of the KvAP VSD solubilized within phospholipid micelles is similar to a previously determined crystal structure solubilized by a nonionic detergent and complexed with an antibody fragment. The differences observed include a previously unidentified short amphipathic α-helix that precedes the first transmembrane helix and a subtle rigid-body repositioning of the S3-S4 voltage-sensor paddle. Using (15)N relaxation experiments, we show that much of the VSD, including the pronounced kink in S3 and the S3-S4 paddle, is relatively rigid on the picosecond-to-nanosecond timescale. In contrast, the kink in S3 is mobile on the microsecond-to-millisecond timescale and may act as a hinge in the movement of the paddle during channel gating. We characterized the VSD-phospholipid micelle interactions using nuclear Overhauser effect spectroscopy and showed that the micelle uniformly coats the KvAP VSD and approximates the chemical environment of a phospholipid bilayer. Using paramagnetically labeled phospholipids, we show that bilayer-forming lipids interact with the S3 and S4 helices more strongly than with S1 and S2.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/química , Aeropyrum/química , Proteínas Arqueales/química , Activación del Canal Iónico , Micelas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosfolípidos , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Soluciones , Termodinámica
6.
J Am Chem Soc ; 131(42): 15246-50, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19919160

RESUMEN

Pulsed electron-electron double-resonance (PELDOR) measurements are presented from the potassium ion channel KcsA both solubilized in detergent and reconstituted in lipids. Site-directed spin-labeling using (1-oxyl-2,2,5,5-tetramethyl-3-pyrrolin-3-yl)methyl methanethiosulfonate was performed with a R64C mutant of the protein. The orientations of the spin-labels in the tetramer were determined by PELDOR experiments performed at two magnetic field strengths (0.3 T/X-band and 1.2 T/Q-band) and variable probe frequency. Quantitative simulation of the PELDOR data supports a strongly restricted nitroxide, oriented at an angle of 65 degrees relative to the central channel axis. In general, poorer quality PELDOR data were obtained from membrane-reconstituted preparations compared to soluble proteins or detergent-solubilized samples. One reason for this is the reduced transverse spin relaxation time T(2) of nitroxides due to crowding of tetramers within the membrane that occurs even at low protein to lipid ratios. This reduced T(2) can be overcome by reconstituting mixtures of unlabeled and labeled proteins, yielding high-quality PELDOR data. Identical PELDOR oscillation frequencies and their dependencies on the probe frequency were observed in the detergent and membrane-reconstituted preparations, indicating that the position and orientation of the spin-labels are the same in both environments.


Asunto(s)
Proteínas Bacterianas/química , Canales de Potasio/química , Bacterias/química , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Modelos Moleculares , Mutación , Canales de Potasio/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
7.
Protein Sci ; 15(12): 2697-707, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17088323

RESUMEN

Dynamic processes are inherent properties of proteins and are crucial for a wide range of biological functions. To address how changes in protein sequence and structure affect dynamic processes, a quantitative comparison of microsecond-to-microsecond time scale conformational changes, measured by solution NMR spectroscopy, within homologous mesophilic and thermophilic ribonuclease H (RNase H) enzymes is presented. Kinetic transitions between the observed major state (high population) and alternate (low population) conformational state(s) of the substrate-binding handle region in RNase H from the mesophile Escherichia coli (ecRNH) and thermophile Thermus thermophilus (ttRNH) occur with similar kinetic exchange rate constants, but the difference in stability between exchanging conformers is smaller in ttRNH compared to ecRNH. The altered thermodynamic equilibrium between kinetically exchanging conformers in the thermophile is recapitulated in ecRNH by the insertion of a Gly residue within a putative hinge between alpha-helices B and C. This Gly insertion is conserved among thermophilic RNases H, and allows the formation of additional intrahelical hydrogen bonds. A Gly residue inserted between alpha-helices B and C appears to relieve unfavorable interactions in the transition state and alternate conformer(s) and represents an important adaptation to adjust conformational changes within RNase H for activity at high temperatures.


Asunto(s)
Mutagénesis Insercional/métodos , Ribonucleasa H/química , Ribonucleasa H/genética , Termodinámica , Secuencia de Aminoácidos , Escherichia coli/química , Glicina/metabolismo , Intercambio Iónico , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Temperatura , Thermus thermophilus/química
8.
J Mol Biol ; 356(5): 1065-72, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16405996

RESUMEN

The yeast Vts1 SAM (sterile alpha motif) domain is a member of a new class of SAM domains that specifically bind RNA. To elucidate the structural basis for RNA binding, the solution structure of the Vts1 SAM domain, in the presence of a specific target RNA, has been solved by multidimensional heteronuclear NMR spectroscopy. The Vts1 SAM domain retains the "core" five-helix-bundle architecture of traditional SAM domains, but has additional short helices at N and C termini, comprising a small substructure that caps the core helices. The RNA-binding surface of Vts1, determined by chemical shift perturbation, maps near the ends of three of the core helices, in agreement with mutational data and the electrostatic properties of the molecule. These results provide a structural basis for the versatility of the SAM domain in protein and RNA-recognition.


Asunto(s)
Secuencias de Aminoácidos , Conformación Proteica , Proteínas de Unión al ARN/química , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Mol Biol ; 339(4): 855-71, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15165855

RESUMEN

Backbone conformational fluctuations on multiple time scales in a cysteine-free Thermus thermophilus ribonuclease HI mutant (ttRNH(*)) are quantified using (15)N nuclear magnetic spin relaxation. Laboratory-frame relaxation data acquired at 310 K and at static magnetic field strengths of 11.7, 14.1 and 18.8 T are analysed using reduced spectral density mapping and model-free approaches. Chemical exchange line broadening is characterized using Hahn-echo transverse and multiple quantum relaxation data acquired over a temperature range of 290-320 K and at a static magnetic field strength of 14.1 T. Results for ttRNH(*) are compared to previously published data for a mesophilic homologue, Escherichia coli ribonuclease HI (ecRNH). Intramolecular conformational fluctuations on the picosecond-to-nanosecond time scale generally are similar for ttRNH(*) and ecRNH. beta-Strands 3 and 5 and the glycine-rich region are more rigid while the substrate-binding handle region and C-terminal tail are more flexible in ttRNH(*) than in ecRNH. Rigidity in the two beta-strands and the glycine-rich region, located along the periphery of the central beta-sheet, may be associated with the increased thermodynamic stability of the thermophilic enzyme. Chemical exchange line broadening, reflecting microsecond-to-millisecond time scale conformational changes, is more pronounced in ttRNH(*) than in ecRNH, particularly for residues in the handle and surrounding the catalytic site. The temperature dependence of chemical exchange show an increase of approximately 15 kJ/mol in the apparent activation energies for ttRNH(*) residues in the handle compared to ecRNH. Increased activation barriers, coupled with motion between alpha-helices B and C not present in ecRNH, may be associated with the reduced catalytic activity of the thermophilic enzyme at 310 K.


Asunto(s)
Ribonucleasa H/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Ribonucleasa H/química , Homología de Secuencia de Aminoácido , Thermus thermophilus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA