Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Cell Rep ; 43(9): 114702, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217613

RESUMEN

Representation of the environment by hippocampal populations is known to drift even within a familiar environment, which could reflect gradual changes in single-cell activity or result from averaging across discrete switches of single neurons. Disambiguating these possibilities is crucial, as they each imply distinct mechanisms. Leveraging change point detection and model comparison, we find that CA1 population vectors decorrelate gradually within a session. In contrast, individual neurons exhibit predominantly step-like emergence and disappearance of place fields or sustained changes in within-field firing. The changes are not restricted to particular parts of the maze or trials and do not require apparent behavioral changes. The same place fields emerge, disappear, and reappear across days, suggesting that the hippocampus reuses pre-existing assemblies, rather than forming new fields de novo. Our results suggest an internally driven perpetual step-like reorganization of the neuronal assemblies.

2.
bioRxiv ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39282373

RESUMEN

Neurons in the hippocampus are correlated with different variables, including space, time, sensory cues, rewards, and actions, where the extent of tuning depends on ongoing task demands. However, it remains uncertain whether such diverse tuning corresponds to distinct functions within the hippocampal network or if a more generic computation can account for these observations. To disentangle the contribution of externally driven cues versus internal computation, we developed a task in mice where space, auditory tones, rewards, and context were juxtaposed with changing relevance. High-density electrophysiological recordings revealed that neurons were tuned to each of these modalities. By comparing movement paths and action sequences, we observed that external variables had limited direct influence on hippocampal firing. Instead, spiking was influenced by online action plans modulated by goal uncertainty. Our results suggest that internally generated cell assembly sequences are selected and updated by action plans toward deliberate goals. The apparent tuning of hippocampal neuronal spiking to different sensory modalities might emerge due to alignment to the afforded action progression within a task rather than representation of external cues.

3.
Bio Protoc ; 14(15): e5044, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39131192

RESUMEN

Physiological changes during awake immobility-related brain states remain one of the great unexplored behavioral states. Controlling periods of awake immobility is challenging because restraining the animal is stressful and is accompanied by altered physiological states. Here, we describe the ThermoMaze, a behavioral paradigm that allows for the collection of large amounts of physiological data while the animal rests at distinct experimenter-determined locations. We found that the paradigm generated long periods of immobility and did not alter the brain temperature. We combined the ThermoMaze with electrophysiology recordings in the CA1 region of the hippocampus and found a location-specific distribution of sharp-wave ripple events. We describe the construction of the ThermoMaze with the intention that it helps enable large-scale data recordings on immobility-related brain states. Key features • Controlling periods of awake immobility in rodents. • Electronic-friendly analog of the Morris water maze.

4.
bioRxiv ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39185175

RESUMEN

Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell-types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here we describe two complementary TEMPO voltage-sensing technologies that capture neural oscillations up to ~100 Hz. Fiber-optic TEMPO achieves ~10-fold greater sensitivity than prior photometry systems, allows hour-long recordings, and monitors two neuron-classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell-classes across a ~8-mm-wide field-of-view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3-7 Hz waves in the visual cortex, and previously unreported propagation directions for hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.

5.
Res Sq ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39149505

RESUMEN

Implantable active dense CMOS neural probes unlock the possibility of spatiotemporally resolving the activity of hundreds of single neurons in multiple brain circuits to investigate brain dynamics. Mapping neural dynamics in brain circuits with anatomical structures spanning several millimeters, however, remains challenging. Here, we demonstrate the first CMOS neural probe for mapping intracortical neural dynamics (both LFPs and spikes) in awake, behaving mice from an area >4 mm2. By taking advantage of the modularity of our SiNAPS technology, we realized an eight shanks probe with 1024 electrode channels arranged on each shank in regular arrays with an electrode pitch <30 µm. Low-noise recordings from all electrodes at 20 kHz/channel demonstrate a field of view spanning the 2D lattice of the entire mice hippocampal circuit, together with cortical and thalamic regions. This arrangement allows combining large population unit recording across distributed networks with precise intra- and interlaminar/nuclear mapping of the oscillatory dynamics.

6.
Cell Rep ; 43(8): 114539, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39052483

RESUMEN

The mammillary bodies (MBOs), a group of hypothalamic nuclei, play a pivotal role in memory formation and spatial navigation. They receive extensive inputs from the hippocampus through the fornix, but the physiological significance of these connections remains poorly understood. Damage to the MBOs is associated with various forms of anterograde amnesia. However, information about the physiological characteristics of the MBO is limited, primarily due to the limited number of studies that have directly monitored MBO activity along with population patterns of its upstream partners. Employing large-scale silicon probe recording in mice, we characterize MBO activity and its interaction with the subiculum across various brain states. We find that MBO cells are highly diverse in their relationship to theta, ripple, and slow oscillations. Several of the physiological features are inherited by the topographically organized inputs to MBO cells. Our study provides insights into the functional organization of the MBOs.


Asunto(s)
Hipocampo , Tubérculos Mamilares , Neuronas , Animales , Tubérculos Mamilares/fisiología , Neuronas/fisiología , Ratones , Hipocampo/fisiología , Hipocampo/citología , Masculino , Ratones Endogámicos C57BL
7.
Cell Rep ; 43(8): 114521, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39024104

RESUMEN

While visual responses to familiar and novel stimuli have been extensively studied, it is unknown how neuronal representations of familiar stimuli are affected when they are interleaved with novel images. We examined a large-scale dataset from mice performing a visual go/no-go change detection task. After training with eight images, six novel images were interleaved with two familiar ones. Unexpectedly, we found that the behavioral performance in response to familiar images was impaired when they were mixed with novel images. When familiar images were interleaved with novel ones, the dimensionality of their representation increased, indicating a perturbation of their neuronal responses. Furthermore, responses to familiar images in the primary visual cortex were less predictive of responses in higher-order areas, indicating less efficient communication. Spontaneous correlations between neurons were predictive of responses to novel images, but less so to familiar ones. Our study demonstrates the modification of representations of familiar images by novelty.


Asunto(s)
Señales (Psicología) , Animales , Ratones , Conducta Animal , Masculino , Estimulación Luminosa , Ratones Endogámicos C57BL , Neuronas/fisiología , Reconocimiento en Psicología/fisiología , Percepción Visual/fisiología , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Corteza Visual Primaria/fisiología
8.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712092

RESUMEN

Flexible intracortical neural probes have drawn attention for their enhanced longevity in high-resolution neural recordings due to reduced tissue reaction. However, the conventional monolithic fabrication approach has met significant challenges in: (i) scaling the number of recording sites for electrophysiology; (ii) integrating of other physiological sensing and modulation; and (iii) configuring into three-dimensional (3D) shapes for multi-sided electrode arrays. We report an innovative self-assembly technology that allows for implementing flexible origami neural probes as an effective alternative to overcome these challenges. By using magnetic-field-assisted hybrid self-assembly, multiple probes with various modalities can be stacked on top of each other with precise alignment. Using this approach, we demonstrated a multifunctional device with scalable high-density recording sites, dopamine sensors and a temperature sensor integrated on a single flexible probe. Simultaneous large-scale, high-spatial-resolution electrophysiology was demonstrated along with local temperature sensing and dopamine concentration monitoring. A high-density 3D origami probe was assembled by wrapping planar probes around a thin fiber in a diameter of 80∼105 µm using optimal foldable design and capillary force. Directional optogenetic modulation could be achieved with illumination from the neuron-sized micro-LEDs (µLEDs) integrated on the surface of 3D origami probes. We could identify angular heterogeneous single-unit signals and neural connectivity 360° surrounding the probe. The probe longevity was validated by chronic recordings of 64-channel stacked probes in behaving mice for up to 140 days. With the modular, customizable assembly technologies presented, we demonstrated a novel and highly flexible solution to accommodate multifunctional integration, channel scaling, and 3D array configuration.

9.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712105

RESUMEN

Representation of the environment by hippocampal populations is known to drift even within a familiar environment, which could reflect gradual changes in single cell activity or result from averaging across discrete switches of single neurons. Disambiguating these possibilities is crucial, as they each imply distinct mechanisms. Leveraging change point detection and model comparison, we found that CA1 population vectors decorrelated gradually within a session. In contrast, individual neurons exhibited predominantly step-like emergence and disappearance of place fields or sustained change in within-field firing. The changes were not restricted to particular parts of the maze or trials and did not require apparent behavioral changes. The same place fields emerged, disappeared, and reappeared across days, suggesting that the hippocampus reuses pre-existing assemblies, rather than forming new fields de novo. Our results suggest an internally-driven perpetual step-like reorganization of the neuronal assemblies.

11.
Cell Rep ; 43(4): 113839, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507409

RESUMEN

Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.


Asunto(s)
Calcineurina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Homeostasis , Sinapsis , Animales , Sinapsis/metabolismo , Sinapsis/fisiología , Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratones
12.
Science ; 383(6690): 1478-1483, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38547293

RESUMEN

Experiences need to be tagged during learning for further consolidation. However, neurophysiological mechanisms that select experiences for lasting memory are not known. By combining large-scale neural recordings in mice with dimensionality reduction techniques, we observed that successive maze traversals were tracked by continuously drifting populations of neurons, providing neuronal signatures of both places visited and events encountered. When the brain state changed during reward consumption, sharp wave ripples (SPW-Rs) occurred on some trials, and their specific spike content decoded the trial blocks that surrounded them. During postexperience sleep, SPW-Rs continued to replay those trial blocks that were reactivated most frequently during waking SPW-Rs. Replay content of awake SPW-Rs may thus provide a neurophysiological tagging mechanism to select aspects of experience that are preserved and consolidated for future use.


Asunto(s)
Ondas Encefálicas , Región CA1 Hipocampal , Consolidación de la Memoria , Neuronas , Animales , Ratones , Neuronas/fisiología , Consolidación de la Memoria/fisiología , Aprendizaje por Laberinto , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología
13.
Neuron ; 112(11): 1862-1875.e5, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38537642

RESUMEN

A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.


Asunto(s)
Acetilcolina , Hipocampo , Oxitocina , Oxitocina/metabolismo , Acetilcolina/metabolismo , Hipocampo/fisiología , Hipocampo/metabolismo , Animales , Masculino , Optogenética , Neuronas/fisiología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ritmo Gamma/fisiología , Ritmo Gamma/efectos de los fármacos , Neurotransmisores/metabolismo , Neurotransmisores/farmacología , Ratones , Ratas , Vigilia/fisiología
14.
Cell Rep ; 43(3): 113807, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38401118

RESUMEN

Hippocampal principal neurons display both spatial tuning properties and memory features. Whether this distinction corresponds to separate neuron types or a context-dependent continuum has been debated. We report here that the task-context ("splitter") feature is highly variable along both trial and spatial position axes. Neurons acquire or lose splitter features across trials even when place field features remain unaltered. Multiple place fields of the same neuron can individually encode both past or future run trajectories, implying that splitter fields are under the control of assembly activity. Place fields can be differentiated into subfields by the behavioral choice of the animal, and splitting within subfields evolves across trials. Interneurons also differentiate choices by integrating inputs from pyramidal cells. Finally, bilateral optogenetic inactivation of the medial entorhinal cortex reversibly decreases the fraction of splitter fields. Our findings suggest that place or splitter features are different manifestations of the same hippocampal computation.


Asunto(s)
Hipocampo , Memoria a Corto Plazo , Animales , Hipocampo/fisiología , Interneuronas , Neuronas/fisiología , Células Piramidales
15.
Bioelectromagnetics ; 45(3): 139-155, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37876116

RESUMEN

Over the past few decades, daily exposure to radiofrequency (RF) fields has been increasing due to the rapid development of wireless and medical imaging technologies. Under extreme circumstances, exposure to very strong RF energy can lead to heating of body tissue, even resulting in tissue injury. The presence of implanted devices, moreover, can amplify RF effects on surrounding tissue. Therefore, it is important to understand the interactions of RF fields with tissue in the presence of implants, in order to establish appropriate wireless safety protocols, and also to extend the benefits of medical imaging to increasing numbers of people with implanted medical devices. This study explored the neurological effects of RF exposure in rodents implanted with neuronal recording electrodes. We exposed freely moving and anesthetized rats and mice to 950 MHz RF energy while monitoring their brain activity, temperature, and behavior. We found that RF exposure could induce fast onset firing of single neurons without heat injury. In addition, brain implants enhanced the effect of RF stimulation resulting in reversible behavioral changes. Using an optical temperature measurement system, we found greater than tenfold increase in brain temperature in the vicinity of the implant. On the one hand, our results underline the importance of careful safety assessment for brain-implanted devices, but on the other hand, we also show that metal implants may be used for neurostimulation if brain temperature can be kept within safe limits.


Asunto(s)
Imagen por Resonancia Magnética , Roedores , Humanos , Ratas , Ratones , Animales , Imagen por Resonancia Magnética/métodos , Encéfalo , Ondas de Radio/efectos adversos , Prótesis e Implantes/efectos adversos , Fantasmas de Imagen , Calor
16.
bioRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37987008

RESUMEN

A general wisdom is that experiences need to be tagged during learning for further consolidation. However, brain mechanisms that select experiences for lasting memory are not known. Combining large-scale neural recordings with a novel application of dimensionality reduction techniques, we observed that successive traversals in the maze were tracked by continuously drifting populations of neurons, providing neuronal signatures of both places visited and events encountered (trial number). When the brain state changed during reward consumption, sharp wave ripples (SPW-Rs) occurred on some trials and their unique spike content most often decoded the trial in which they occurred. In turn, during post-experience sleep, SPW-Rs continued to replay those trials that were reactivated most frequently during awake SPW-Rs. These findings suggest that replay content of awake SPW-Rs provides a tagging mechanism to select aspects of experience that are preserved and consolidated for future use.

17.
ArXiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38013885

RESUMEN

Identification and manipulation of different GABAergic interneuron classes in the behaving animal are important to understand their role in circuit dynamics and behavior. The combination of optogenetics and large-scale neuronal recordings allows specific interneuron populations to be identified and perturbed for circuit analysis in intact animals. A crucial aspect of this approach is coupling electrophysiological recording with spatially and temporally precise light delivery. Focal multisite illumination of neuronal activators and silencers in predetermined temporal configurations or a closed loop manner opens the door to addressing many novel questions. Recent progress demonstrates the utility and power of this novel technique for interneuron research.

18.
J Neurosci ; 43(45): 7565-7574, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940593

RESUMEN

The ability to store information about the past to dynamically predict and prepare for the future is among the most fundamental tasks the brain performs. To date, the problems of understanding how the brain stores and organizes information about the past (memory) and how the brain represents and processes temporal information for adaptive behavior have generally been studied as distinct cognitive functions. This Symposium explores the inherent link between memory and temporal cognition, as well as the potential shared neural mechanisms between them. We suggest that working memory and implicit timing are interconnected and may share overlapping neural mechanisms. Additionally, we explore how temporal structure is encoded in associative and episodic memory and, conversely, the influences of episodic memory on subsequent temporal anticipation and the perception of time. We suggest that neural sequences provide a general computational motif that contributes to timing and working memory, as well as the spatiotemporal coding and recall of episodes.


Asunto(s)
Encéfalo , Memoria Episódica , Recuerdo Mental , Cognición , Memoria a Corto Plazo
19.
Elife ; 122023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665123

RESUMEN

Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools. Here, we show that these INs can be accessed experimentally using intersectional genetics with the gene Id2. We find that outside of layer 1 (L1), the majority of Id2 INs are NGFCs that express high levels of neuropeptide Y (NPY) and exhibit a late-spiking firing pattern, with extensive local connectivity. While much sparser, non-NGFC Id2 INs had more variable properties, with most cells corresponding to a diverse group of INs that strongly expresses the neuropeptide CCK. In vivo, using silicon probe recordings, we observed several distinguishing aspects of NGFC activity, including a strong rebound in activity immediately following the cortical down state during NREM sleep. Our study provides insights into IN diversity and NGFC distribution and properties, and outlines an intersectional genetics approach for further study of this underappreciated group of INs.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Neuropéptidos , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Neuropéptido Y/metabolismo , Neuropéptidos/metabolismo , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-37649960

RESUMEN

With the development of novel technologies, radio frequency (RF) energy exposure is expanding at various wavelengths and power levels. These developments necessitate updated approaches of RF measurements in complex environments, particularly in live biological tissue. Accurate dosimetry of the absorbed RF electric fields (E-Fields) by the live tissue is the keystone of environmental health considerations for this type of ever-growing non-ionizing radiation energy. In this study, we introduce a technique for direct in-vivo measurement of electric fields in living tissue. Proof of principle in-vivo electric field measurements were conducted in rodent brains using Bismuth Silicon Oxide (BSO) crystals exposed to varying levels of RF energy. Electric field measurements were calibrated and verified using in-vivo temperature measurements using optical temperature fibers alongside electromagnetic field simulations of a transverse electromagnetic (TEM) cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA