Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Nat Commun ; 15(1): 4032, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740753

Animal regeneration involves coordinated responses across cell types throughout the animal body. In endosymbiotic animals, whether and how symbionts react to host injury and how cellular responses are integrated across species remain unexplored. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis sp. green algae and can regenerate entire bodies from tissue fragments. We show that animal injury causes a decline in the photosynthetic efficiency of the symbiotic algae, alongside two distinct, sequential waves of transcriptional responses in acoel and algal cells. The initial algal response is characterized by the upregulation of a cohort of photosynthesis-related genes, though photosynthesis is not necessary for regeneration. A conserved animal transcription factor, runt, is induced after injury and required for acoel regeneration. Knockdown of Cl-runt dampens transcriptional responses in both species and further reduces algal photosynthetic efficiency post-injury. Our results suggest that the holobiont functions as an integrated unit of biological organization by coordinating molecular networks across species through the runt-dependent animal regeneration program.


Photosynthesis , Regeneration , Symbiosis , Animals , Regeneration/physiology , Chlorophyta/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
2.
iScience ; 26(10): 107813, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37810211

Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGEhi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.

3.
Genome Biol ; 24(1): 167, 2023 07 17.
Article En | MEDLINE | ID: mdl-37461039

In this manuscript, we introduce and benchmark Mandalorion v4.1 for the identification and quantification of full-length transcriptome sequencing reads. It further improves upon the already strong performance of Mandalorion v3.6 used in the LRGASP consortium challenge. By processing real and simulated data, we show three main features of Mandalorion: first, Mandalorion-based isoform identification has very high precision and maintains high recall even in the absence of any genome annotation. Second, isoform read counts as quantified by Mandalorion show a high correlation with simulated read counts. Third, isoforms identified by Mandalorion closely reflect the full-length transcriptome sequencing data sets they are based on.


High-Throughput Nucleotide Sequencing , Transcriptome , Protein Isoforms/genetics , Gene Expression Profiling , Sequence Analysis, RNA
4.
Life Sci Alliance ; 6(1)2023 01.
Article En | MEDLINE | ID: mdl-36526371

Spatial transcriptomics extends single-cell RNA sequencing (scRNA-seq) by providing spatial context for cell type identification and analysis. Imaging-based spatial technologies such as multiplexed error-robust fluorescence in situ hybridization (MERFISH) can achieve single-cell resolution, directly mapping single-cell identities to spatial positions. MERFISH produces a different data type than scRNA-seq, and a technical comparison between the two modalities is necessary to ascertain how to best integrate them. We performed MERFISH on the mouse liver and kidney and compared the resulting bulk and single-cell RNA statistics with those from the Tabula Muris Senis cell atlas and from two Visium datasets. MERFISH quantitatively reproduced the bulk RNA-seq and scRNA-seq results with improvements in overall dropout rates and sensitivity. Finally, we found that MERFISH independently resolved distinct cell types and spatial structure in both the liver and kidney. Computational integration with the Tabula Muris Senis atlas did not enhance these results. We conclude that MERFISH provides a quantitatively comparable method for single-cell gene expression and can identify cell types without the need for computational integration with scRNA-seq atlases.


Single-Cell Analysis , Transcriptome , Mice , Animals , In Situ Hybridization, Fluorescence/methods , Single-Cell Analysis/methods , Transcriptome/genetics , Gene Expression Profiling/methods , RNA-Seq
5.
Nat Commun ; 12(1): 5152, 2021 08 26.
Article En | MEDLINE | ID: mdl-34446707

The immunological features that distinguish COVID-19-associated acute respiratory distress syndrome (ARDS) from other causes of ARDS are incompletely understood. Here, we report the results of comparative lower respiratory tract transcriptional profiling of tracheal aspirate from 52 critically ill patients with ARDS from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a "cytokine storm," we observe reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS is characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity. In silico analysis of gene expression identifies several candidate drugs that may modulate gene expression in COVID-19 ARDS, including dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 is characterized by impaired interferon-stimulated gene (ISG) expression. The relationship between SARS-CoV-2 viral load and expression of ISGs is decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients reveals distinct immunological features of COVID-19 ARDS.


COVID-19/genetics , RNA/genetics , Respiratory Distress Syndrome/genetics , Trachea/immunology , Adult , Aged , Aged, 80 and over , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Cohort Studies , Critical Illness , Cytokines/genetics , Cytokines/immunology , Female , Gene Expression Profiling , Humans , Male , Middle Aged , RNA/metabolism , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2/physiology , Sequence Analysis, RNA
6.
Sci Transl Med ; 13(612): eabh2624, 2021 Sep 22.
Article En | MEDLINE | ID: mdl-34429372

Neutralizing autoantibodies against type I interferons (IFNs) have been found in some patients with critical coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the prevalence of these antibodies, their longitudinal dynamics across the disease severity scale, and their functional effects on circulating leukocytes remain unknown. Here, in 284 patients with COVID-19, we found type I IFN­specific autoantibodies in peripheral blood samples from 19% of patients with critical disease and 6% of patients with severe disease. We found no type I IFN autoantibodies in individuals with moderate disease. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 patients with COVID-19 and 26 non­COVID-19 controls revealed a lack of type I IFN­stimulated gene (ISG-I) responses in myeloid cells from patients with critical disease. This was especially evident in dendritic cell populations isolated from patients with critical disease producing type I IFN­specific autoantibodies. Moreover, we found elevated expression of the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) on the surface of monocytes isolated from patients with critical disease early in the disease course. LAIR1 expression is inversely correlated with ISG-I expression response in patients with COVID-19 but is not expressed in healthy controls. The deficient ISG-I response observed in patients with critical COVID-19 with and without type I IFN­specific autoantibodies supports a unifying model for disease pathogenesis involving ISG-I suppression through convergent mechanisms.


Autoantibodies , COVID-19 , Interferon Type I , Autoantibodies/immunology , COVID-19/immunology , Humans , Interferon Type I/immunology
7.
Res Sq ; 2021 Apr 23.
Article En | MEDLINE | ID: mdl-34013247

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing (scRNA-seq) we assessed lower respiratory tract immune responses and microbiome dynamics in 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill uninfected controls. Two days before VAP onset we observed a transcriptional signature of bacterial infection. Two weeks prior to VAP onset, following intubation, we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.

8.
J Hered ; 112(4): 377-384, 2021 07 15.
Article En | MEDLINE | ID: mdl-33882130

The Andean bear is the only extant member of the Tremarctine subfamily and the only extant ursid species to inhabit South America. Here, we present an annotated de novo assembly of a nuclear genome from a captive-born female Andean bear, Mischief, generated using a combination of short and long DNA and RNA reads. Our final assembly has a length of 2.23 Gb, and a scaffold N50 of 21.12 Mb, contig N50 of 23.5 kb, and BUSCO score of 88%. The Andean bear genome will be a useful resource for exploring the complex phylogenetic history of extinct and extant bear species and for future population genetics studies of Andean bears.


Ursidae , Animals , Cell Nucleus , Female , Genome , Molecular Sequence Annotation , Phylogeny , South America , Ursidae/genetics
9.
medRxiv ; 2021 Nov 30.
Article En | MEDLINE | ID: mdl-33791731

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing we assessed lower respiratory tract immune responses and microbiome dynamics in 23 COVID-19 patients, 10 of whom developed VAP, and eight critically ill uninfected controls. At a median of three days (range: 2-4 days) before VAP onset we observed a transcriptional signature of bacterial infection. At a median of 15 days prior to VAP onset (range: 8-38 days), we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.

10.
bioRxiv ; 2021 Mar 10.
Article En | MEDLINE | ID: mdl-33758859

Type I interferon (IFN-I) neutralizing autoantibodies have been found in some critical COVID-19 patients; however, their prevalence and longitudinal dynamics across the disease severity scale, and functional effects on circulating leukocytes remain unknown. Here, in 284 COVID-19 patients, we found IFN-I autoantibodies in 19% of critical, 6% of severe and none of the moderate cases. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 COVID-19 patients, 15 non-COVID-19 patients and 11 non-hospitalized healthy controls, revealed a lack of IFN-I stimulated gene (ISG-I) response in myeloid cells from critical cases, including those producing anti-IFN-I autoantibodies. Moreover, surface protein analysis showed an inverse correlation of the inhibitory receptor LAIR-1 with ISG-I expression response early in the disease course. This aberrant ISG-I response in critical patients with and without IFN-I autoantibodies, supports a unifying model for disease pathogenesis involving ISG-I suppression via convergent mechanisms.

11.
Science ; 371(6530)2021 02 12.
Article En | MEDLINE | ID: mdl-33574182

The evolutionarily conserved splicing regulator neuro-oncological ventral antigen 1 (NOVA1) plays a key role in neural development and function. NOVA1 also includes a protein-coding difference between the modern human genome and Neanderthal and Denisovan genomes. To investigate the functional importance of an amino acid change in humans, we reintroduced the archaic allele into human induced pluripotent cells using genome editing and then followed their neural development through cortical organoids. This modification promoted slower development and higher surface complexity in cortical organoids with the archaic version of NOVA1 Moreover, levels of synaptic markers and synaptic protein coassociations correlated with altered electrophysiological properties in organoids expressing the archaic variant. Our results suggest that the human-specific substitution in NOVA1, which is exclusive to modern humans since divergence from Neanderthals, may have had functional consequences for our species' evolution.


Cerebral Cortex/growth & development , Cerebral Cortex/physiology , Neanderthals/genetics , Neurons/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alleles , Alternative Splicing , Amino Acid Substitution , Animals , Binding Sites , Biological Evolution , CRISPR-Cas Systems , Cell Proliferation , Cerebral Cortex/cytology , Gene Expression Regulation, Developmental , Genetic Variation , Genome , Genome, Human , Haplotypes , Hominidae/genetics , Humans , Induced Pluripotent Stem Cells , Nerve Net/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuro-Oncological Ventral Antigen , Organoids , Synapses/physiology
12.
Res Sq ; 2021 Jan 14.
Article En | MEDLINE | ID: mdl-33469573

We performed comparative lower respiratory tract transcriptional profiling of 52 critically ill patients with the acute respiratory distress syndrome (ARDS) from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a cytokine storm, we observed reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS was characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity that were predicted to be modulated by dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 was characterized by impaired interferon-stimulated gene expression (ISG). We found that the relationship between SARS-CoV-2 viral load and expression of ISGs was decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients with COVID-19 ARDS did not demonstrate cytokine storm but instead revealed a unique and dysregulated host response predicted to be modified by dexamethasone.

13.
PLoS Genet ; 16(8): e1008935, 2020 08.
Article En | MEDLINE | ID: mdl-32841233

Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-like fate due to decreased homologous recombination and inefficient selection. However, numerous associations exist that counter these expectations, especially in marine environments, possibly due to ongoing horizontal gene flow. Despite extensive theoretical treatment, no empirical study thus far has connected these underlying population genetic processes with long-term evolutionary outcomes. By sampling marine chemosynthetic bacterial-bivalve endosymbioses that range from primarily vertical to strictly horizontal transmission, we tested this canonical theory. We found that transmission mode strongly predicts homologous recombination rates, and that exceedingly low recombination rates are associated with moderate genome degradation in the marine symbionts with nearly strict vertical transmission. Nonetheless, even the most degraded marine endosymbiont genomes are occasionally horizontally transmitted and are much larger than their terrestrial insect symbiont counterparts. Therefore, horizontal transmission and recombination enable efficient natural selection to maintain intermediate symbiont genome sizes and substantial functional genetic variation.


Bacteria/pathogenicity , Bivalvia/microbiology , Gene Transfer, Horizontal , Genome, Bacterial , Recombination, Genetic , Symbiosis/genetics , Animals , Bacteria/genetics , Bivalvia/genetics , Evolution, Molecular , Genetic Variation
14.
Cell Rep ; 31(8): 107668, 2020 05 26.
Article En | MEDLINE | ID: mdl-32460011

The liver is a key regulator of systemic energy homeostasis whose proper function is dependent on the circadian clock. Here, we show that livers deficient in the oscillator component JARID1a exhibit a dysregulation of genes involved in energy metabolism. Importantly, we find that mice that lack hepatic JARID1a have decreased lean body mass, decreased respiratory exchange ratios, faster production of ketones, and increased glucose production in response to fasting. Finally, we find that JARID1a loss compromises the response of the hepatic transcriptome to nutrient availability. In all, ablation of hepatic JARID1a disrupts the coordination of hepatic metabolic programs with whole-body consequences.


DNA-Binding Proteins/metabolism , Feeding Behavior/physiology , Jumonji Domain-Containing Histone Demethylases/metabolism , Liver/metabolism , Adaptation, Physiological , Animals , Circadian Rhythm/physiology , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Humans , Jumonji Domain-Containing Histone Demethylases/deficiency , Jumonji Domain-Containing Histone Demethylases/genetics , Mice , Mice, Knockout
15.
Genome Res ; 30(4): 589-601, 2020 04.
Article En | MEDLINE | ID: mdl-32312742

The human immune system relies on highly complex and diverse transcripts and the proteins they encode. These include transcripts encoding human leukocyte antigen (HLA) receptors as well as B cell and T cell receptors (BCR and TCR). Determining which alleles an individual possesses for each HLA gene (high-resolution HLA typing) is essential to establish donor-recipient compatibility in organ and bone marrow transplantations. In turn, the repertoires of millions of unique BCR and TCR transcripts in each individual carry a vast amount of health-relevant information. Both short-read RNA-seq-based HLA typing and BCR/TCR repertoire sequencing (AIRR-seq) currently rely on our incomplete knowledge of the genetic diversity at HLA and BCR/TCR loci. Here, we generated over 10,000,000 full-length cDNA sequences at a median accuracy of 97.9% using our nanopore sequencing-based Rolling Circle Amplification to Concatemeric Consensus (R2C2) protocol. We used this data set to (1) show that deep and accurate full-length cDNA sequencing can be used to provide isoform-level transcriptome analysis for more than 9000 loci, (2) generate accurate sequences of HLA alleles, and (3) extract detailed AIRR data for the analysis of the adaptive immune system. The HLA and AIRR analysis approaches we introduce here are untargeted and therefore do not require prior knowledge of the composition or genetic diversity of HLA and BCR/TCR loci.


DNA, Complementary , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Immune System/cytology , Immune System/metabolism , Transcriptome , Alleles , Alternative Splicing , Female , Gene Expression Profiling/methods , Gene Expression Regulation , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Histocompatibility Testing , Humans , Male , Mutation , Receptors, Immunologic
17.
Philos Trans R Soc Lond B Biol Sci ; 374(1786): 20190097, 2019 11 25.
Article En | MEDLINE | ID: mdl-31587638

Long-read sequencing holds great potential for transcriptome analysis because it offers researchers an affordable method to annotate the transcriptomes of non-model organisms. This, in turn, will greatly benefit future work on less-researched organisms like unicellular eukaryotes that cannot rely on large consortia to generate these transcriptome annotations. However, to realize this potential, several remaining molecular and computational challenges will have to be overcome. In this review, we have outlined the limitations of short-read sequencing technology and how long-read sequencing technology overcomes these limitations. We have also highlighted the unique challenges still present for long-read sequencing technology and provided some suggestions on how to overcome these challenges going forward. This article is part of a discussion meeting issue 'Single cell ecology'.


Eukaryota/genetics , Gene Expression Profiling/methods , Single-Cell Analysis/methods , Transcriptome
18.
Nat Commun ; 10(1): 4769, 2019 10 18.
Article En | MEDLINE | ID: mdl-31628318

Pumas are the most widely distributed felid in the Western Hemisphere. Increasingly, however, human persecution and habitat loss are isolating puma populations. To explore the genomic consequences of this isolation, we assemble a draft puma genome and a geographically broad panel of resequenced individuals. We estimate that the lineage leading to present-day North American pumas diverged from South American lineages 300-100 thousand years ago. We find signatures of close inbreeding in geographically isolated North American populations, but also that tracts of homozygosity are rarely shared among these populations, suggesting that assisted gene flow would restore local genetic diversity. The genome of a Florida panther descended from translocated Central American individuals has long tracts of homozygosity despite recent outbreeding. This suggests that while translocations may introduce diversity, sustaining diversity in small and isolated populations will require either repeated translocations or restoration of landscape connectivity. Our approach provides a framework for genome-wide analyses that can be applied to the management of similarly small and isolated populations.


Genome-Wide Association Study/methods , Genomics/methods , Inbreeding/methods , Puma/genetics , Animals , Gene Flow , Genetic Variation , Genetics, Population , Geography , North America , Phylogeny , Puma/classification , South America
19.
Front Genet ; 10: 643, 2019.
Article En | MEDLINE | ID: mdl-31379921

Transcriptome studies evaluating whole blood and tissues are often confounded by overrepresentation of highly abundant transcripts. These abundant transcripts are problematic, as they compete with and prevent the detection of rare RNA transcripts, obscuring their biological importance. This issue is more pronounced when using long-read sequencing technologies for isoform-level transcriptome analysis, as they have relatively lower throughput compared to short-read sequencers. As a result, long-read based transcriptome analysis is prohibitively expensive for non-model organisms. While there are off-the-shelf kits available for select model organisms capable of depleting highly abundant transcripts for alpha (HBA) and beta (HBB) hemoglobin, they are unsuitable for non-model organisms. To address this, we have adapted the recent CRISPR/Cas9-based depletion method (depletion of abundant sequences by hybridization) for long-read full-length cDNA sequencing approaches that we call Long-DASH. Using a recombinant Cas9 protein with appropriate guide RNAs, full-length hemoglobin transcripts can be depleted in vitro prior to performing any short- and long-read sequencing library preparations. Using this method, we sequenced depleted full-length cDNA in parallel using both our Oxford Nanopore Technology (ONT) based R2C2 long-read approach, as well as the Illumina short-read based Smart-seq2 approach. To showcase this, we have applied our methods to create an isoform-level transcriptome from whole blood samples derived from three polar bears (Ursus maritimus). Using Long-DASH, we succeeded in depleting hemoglobin transcripts and generated deep Smart-seq2 Illumina datasets and 3.8 million R2C2 full-length cDNA consensus reads. Applying Long-DASH with our isoform identification pipeline, Mandalorion, we discovered ∼6,000 high-confidence isoforms and a number of novel genes. This indicates that there is a high diversity of gene isoforms within U. maritimus not yet reported. This reproducible and straightforward approach has not only improved the polar bear transcriptome annotations but will serve as the foundation for future efforts to investigate transcriptional dynamics within the 19 polar bear subpopulations around the Arctic.

20.
Clin Implant Dent Relat Res ; 21(4): 649-655, 2019 Aug.
Article En | MEDLINE | ID: mdl-31172638

OBJECTIVES: The aim of this investigation was to evaluate whether the use of a provisional implant-supported crown improves the final esthetic outcome of implant crowns that are placed within esthetic sites. MATERIALS AND METHODS: Twenty endosseous implants were inserted in sites 13 to 23 (FDI) in 20 patients. Following the reopening procedure, a randomization process assigned them to either cohort group 1: a provisional phase with soft tissue conditioning using the "dynamic compression technique" or cohort group 2: without a provisional phase. Screw-retained all ceramic crowns were inserted. Clinical follow-up appointments were completed at 36 months evaluating clinical, radiographic outcomes, and implant success and survival. RESULTS: After 3 years, all implants survived; one implant-supported crown was excluded from the study due to adjacent tooth failure replaced with a further implant supported crown. Modified pink esthetic score (ModPES) scores were significantly different between groups 1 and 2 (P = .018); white esthetic scores (WES) were not statistically different between both groups (P = .194). Mean values of combined modPES and WES were 15.6 for group 1, with a SD of 3.20. Group 2 had a mean combined modPES and WES of 12.2, with a SD of 3.86. Mean bone loss after 3 year was -0.05 and -0.04 mm for groups 1 and 2 respectively, without being statistically significant. CONCLUSION: Fixed implant-supported provisionals improve the final esthetic outcome of the peri-implant mucosa.


Crowns , Dental Implants, Single-Tooth , Esthetics, Dental , Dental Implantation, Endosseous , Dental Prosthesis, Implant-Supported , Esthetics , Humans , Treatment Outcome
...