Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Nature ; 621(7980): 711-715, 2023 Sep.
Article En | MEDLINE | ID: mdl-37758892

The nearby radio galaxy M87 offers a unique opportunity to explore the connections between the central supermassive black hole and relativistic jets. Previous studies of the inner region of M87 revealed a wide opening angle for the jet originating near the black hole1-4. The Event Horizon Telescope resolved the central radio source and found an asymmetric ring structure consistent with expectations from general relativity5. With a baseline of 17 years of observations, there was a shift in the jet's transverse position, possibly arising from an 8- to 10-year quasi-periodicity3. However, the origin of this sideways shift remains unclear. Here we report an analysis of radio observations over 22 years that suggests a period of about 11 years for the variation in the position angle of the jet. We infer that we are seeing a spinning black hole that induces the Lense-Thirring precession of a misaligned accretion disk. Similar jet precession may commonly occur in other active galactic nuclei but has been challenging to detect owing to the small magnitude and long period of the variation.

2.
Heliyon ; 9(6): e16395, 2023 Jun.
Article En | MEDLINE | ID: mdl-37251468

-Micropumps have attracted considerable interest in micro-electro-mechanical systems (MEMS), microfluidic devices, and biomedical engineering to transfer fluids through capillaries. However, improving the sluggish capillary-driven flow of highly viscous fluids is critical for commercializing MEMS devices, particularly in underfill applications. This study investigated the behavior of different viscous fluid flows under the influence of capillary and electric potential effects. We observed that upon increasing the electric potential to 500 V, the underfill flow length of viscous fluids increased by 45% compared to their capillary flow length. To explore the dynamics of underfill flow under the influence of an electric potential, the polarity of highly viscous fluids was altered by adding NaCl. The results indicated an increase of 20-41% in the underfill flow length of highly viscous conductive fluids (0.5-4% NaCl additives in glycerol) at 500 V compared to that at 0 V. The underfill viscous fluid flow length improved under the electric potential effect owing to the polarity across the substance and increased permittivity of the fluid. A time-dependent simulation, which included a quasi-electrostatic module, level set module, and laminar two-phase flow, was executed using the COMSOL Multiphysics software to analyze the effect of the external electric field on the capillary-driven flow. The numerical simulation results agreed well with the experimental data, with an average deviation of 4-7% at various time steps for different viscous fluids. Our findings demonstrate the potential of utilizing electric fields to control the capillary-driven flow of highly viscous fluids in underfill applications.

3.
Nature ; 616(7958): 686-690, 2023 04.
Article En | MEDLINE | ID: mdl-37100940

The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.

4.
Sci Rep ; 12(1): 16465, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-36182967

For effective ocean energy harvesting, it is necessary to understand the coupled motion of the piezoelectric nanogenerator (PENG) and ocean currents. Herein, we experimentally investigate power performance of the PENG in the perspective of the fluid-structure interaction considering ocean conditions with the Reynolds number (Re) values ranging from 1 to 141,489. A piezoelectric polyvinylidene fluoride micromesh was constructed via electrohydrodynamic (EHD) jet printing technique to produce the ß-phase dominantly that is desirable for powering performance. Water channel was set to generate water flow to vibrate the flexible PENG. By plotting the Re values as a function of nondimensional bending rigidity (KB) and the structure-to-fluid mass ratio (M*), we could find neutral curves dividing the stable and flapping regimes. Analyzing the flow velocities between the vortex and surroundings via a particle image velocimetry, the larger displacement of the PENG in the chaotic flapping regime than that in the flapping regime was attributed to the sharp pressure gradient. By correlating M*, Re, KB, and the PENG performance, we conclude that there is critical KB that generate chaotic flapping motion for effective powering. We believe this study contributes to the establishment of a design methodology for the flexible PENG harvesting of ocean currents.

5.
Polymers (Basel) ; 14(20)2022 Oct 17.
Article En | MEDLINE | ID: mdl-36297952

In the field of soft electronics, high-resolution and transparent structures based on various flexible materials constructed via various printing techniques are gaining attention. With the support of electrical stress-induced conductive inks, the electrohydrodynamic (EHD) jet printing technique enables us to build high-resolution structures compared with conventional inkjet printing techniques. Here, EHD jet printing was used to fabricate a high-resolution, transparent, and flexible strain sensor using a polydimethylsiloxane (PDMS)/xylene elastomer, where repetitive and controllable high-resolution printed mesh structures were obtained. The parametric effects of voltage, flow rate, nozzle distance from the substrate, and speed were experimentally investigated to achieve a high-resolution (5 µm) printed mesh structure. Plasma treatment was performed to enhance the adhesion between the AgNWs and the elastomer structure. The plasma-treated functional structure exhibited stable and long strain-sensing cycles during stretching and bending. This simple printing technique resulted in high-resolution, transparent, flexible, and stable strain sensing. The gauge factor of the strain sensor was significantly increased, owing to the high resolution and sensitivity of the printed mesh structures, demonstrating that EHD technology can be applied to high-resolution microchannels, 3D printing, and electronic devices.

6.
ACS Omega ; 6(48): 32773-32782, 2021 Dec 07.
Article En | MEDLINE | ID: mdl-34901626

This study addressed the dynamics of capillary-driven flow for different surface wettabilities by concentrating on the influence of electric potential. The capillary flow dynamics were investigated by varying the wettability (plasma-treated, hydrophobic, hydrophilic, and superhydrophilic) of a capillary surface, and the applied electric potential to the liquid ranged from 0 to 500 V. When an electric potential was applied to the liquid, the fluid flow penetration length increased by 30-50% due to the electrohydrodynamic (EHD)-driven flow by the Maxwell (electric) pressure gradient effect. The results showed that the EHD effect enhanced the fluid penetration through narrow gaps. The maximum fluid penetration was attained for every surface at 500 V, particularly for the superhydrophilic surface, which exhibited the highest value. The combined effect of the electric field and wettability resulted in an enhanced fluid penetration speed, reducing the underfill time. In addition, theoretical and numerical models were developed for comparison with the experimental results. The proposed models reinforce the observed fluid flow phenomenon on various surfaces under the influence of an electric field. These findings can provide alternative strategies for controlling the dynamic features of capillary imbibition by introducing an electric field and wettability effects, which has practical implications in flip-chip packaging, microfluidic devices, and the manipulation of biocells.

7.
Sci Rep ; 11(1): 7109, 2021 Mar 29.
Article En | MEDLINE | ID: mdl-33782467

The hydrogel of biomolecule-assisted metal/organic complex has the superior ability to form a uniform, continuous, and densely integrated structure, which is necessary for fine thin film fabrication. As a representative of nature-originated polymers with abundant reactive side chains, we select the gelatin molecule as an element for weaving the metal cations. Here, we demonstrate the interaction between the metal cation and gelatin molecules, and associate it with coating quality. We investigate the rheological property of gelatin solutions interacting with metal cation from the view of cross-linking and denaturing of gelatin molecules. Also, we quantitatively compare the corresponding interactions by monitoring the absorbance spectrum of the cation. The coated porous structure is systematically investigated from the infiltration of gelatin-mediated Gd0.2Ce0.8O2-δ (GDC) precursor into Sm0.5Sr0.5CoO3-δ (SSC) porous scaffold. By applying the actively interacting gelatin-GDC system, we achieve a thin film of GDC on SSC with excellent uniformity. Compare to the discrete coating from the typical infiltration process, the optimized thin film coated structure shows enhanced performance and stability.

8.
Science ; 371(6533): 1046-1049, 2021 03 05.
Article En | MEDLINE | ID: mdl-33602863

The evolution of massive stars is influenced by the mass lost to stellar winds over their lifetimes. These winds limit the masses of the stellar remnants (such as black holes) that the stars ultimately produce. We used radio astrometry to refine the distance to the black hole x-ray binary Cygnus X-1, which we found to be [Formula: see text] kiloparsecs. When combined with archival optical data, this implies a black hole mass of 21.2 ± 2.2 solar masses, which is higher than previous measurements. The formation of such a high-mass black hole in a high-metallicity system (within the Milky Way) constrains wind mass loss from massive stars.

9.
Phys Rev Lett ; 125(14): 141104, 2020 Oct 02.
Article En | MEDLINE | ID: mdl-33064506

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.

10.
Sci Adv ; 6(10): eaaz1692, 2020 Mar.
Article En | MEDLINE | ID: mdl-32181360

Microsupercapacitors (MSCs) have garnered considerable attention as a promising power source for microelectronics and miniaturized portable/wearable devices. However, their practical application has been hindered by the manufacturing complexity and dimensional limits. Here, we develop a new class of ultrahigh areal number density solid-state MSCs (UHD SS-MSCs) on a chip via electrohydrodynamic (EHD) jet printing. This is, to the best of our knowledge, the first study to exploit EHD jet printing in the MSCs. The activated carbon-based electrode inks are EHD jet-printed, creating interdigitated electrodes with fine feature sizes. Subsequently, a drying-free, ultraviolet-cured solid-state gel electrolyte is introduced to ensure electrochemical isolation between the SS-MSCs, enabling dense SS-MSC integration with on-demand (in-series/in-parallel) cell connection on a chip. The resulting on-chip UHD SS-MSCs exhibit exceptional areal number density [36 unit cells integrated on a chip (area = 8.0 mm × 8.2 mm), 54.9 cells cm-2] and areal operating voltage (65.9 V cm-2).

11.
ACS Nano ; 14(2): 1738-1744, 2020 02 25.
Article En | MEDLINE | ID: mdl-31999426

Although self-assembly of various peptides has been widely applied, it is challenging to obtain single-crystalline and layer-by-layered nanostructures in a two-dimensional system. Here, we report a method for controlling the morphology and crystal growth at room temperature by a redox-active peptide template that can specifically co-assemble with metal ions. During the crystal growth, a silver ion-coordinated α-helical peptide (+3HN-YYACAYY-COO-) induces long-range atomic ordering at the air/water interface, which leads to multilayered single-crystalline silver nanosheets without an additional annealing process. Furthermore, this peptide template can facilitate efficient electron transfer between the independent metal nanosheets to improve electrochemical properties. We expect that this peptide template-based single-crystal growth method can be extended to synthesize other materials.

12.
Micromachines (Basel) ; 11(1)2019 Dec 19.
Article En | MEDLINE | ID: mdl-31861716

The macroscopic assembly of two-dimensional materials into a laminar structure has received considerable attention because it improves both the mechanical and chemical properties of the original materials. However, conventional manufacturing methods have certain limitations in that they require a high temperature process, use toxic solvents, and are considerably time consuming. Here, we present a new system for the self-assembly of layer-by-layer (LBL) graphene oxide (GO) via an electrohydrodynamic (EHD) jet printing technique. During printing, the orientation of GO flakes can be controlled by the velocity distribution of liquid jet and electric field-induced alignment spontaneously. Closely-packed GO patterns with an ordered laminar structure can be rapidly realized using an interfacial assembly process on the substrates. The surface roughness and electrical conductivity of the LBL structure were significantly improved compared with conventional dispensing methods. We further applied this technique to fabricate a reduced graphene oxide (r-GO)-based supercapacitor and a three-dimensional (3D) metallic grid hybrid ammonia sensor. We present the EHD-assisted assembly of laminar r-GO structures as a new platform for preparing high-performance energy storage devices and sensors.

13.
J Vis Exp ; (143)2019 01 07.
Article En | MEDLINE | ID: mdl-30663667

Fluid flow is an important environmental stimulus that controls many physiological and pathological processes, such as fluid flow-induced vasodilation. Although the molecular mechanisms for the biological responses to fluid flow/shear force are not fully understood, fluid flow-mediated regulation of ion channel gating may contribute critically. Therefore, fluid flow/shear force sensitivity of ion channels has been studied using the patch-clamp technique. However, depending on the experimental protocol, the outcomes and interpretation of data can be erroneous. Here, we present experimental and theoretical evidence for fluid flow-related errors and provide methods for estimating, preventing, and correcting these errors. Changes in junction potential between the Ag/AgCl reference electrode and bathing fluid were measured with an open pipette filled with 3 M KCl. Fluid flow could then shift the liquid/metal junction potential to approximately 7 mV. Conversely, by measuring the voltage shift induced by fluid flow, we estimated the ion concentration in the unstirred boundary layer. In the static condition, the real ion concentrations adjacent to the Ag/AgCl reference electrode or ion channel inlet at the cell-membrane surface can reach as low as approximately 30% of that in the flow condition. Placing an agarose 3 M KCl bridge between the bathing fluid and reference electrode may have prevented this problem of junction potential shifting. However, the unstirred layer effect adjacent to the cell membrane surface could not be fixed in this way. Here, we provide a method for measuring real ion concentrations in the unstirred boundary layer with an open patch-clamp pipette, emphasizing the importance of using an agarose salt-bridge while studying fluid flow-induced regulation of ion currents. Therefore, this novel approach, which takes into consideration the real concentrations of ions in the unstirred boundary layer, may provide useful insight on the experimental design and data interpretation related to fluid shear stress regulation of ion channels.


Ion Channels/metabolism , Membrane Potentials/physiology , Patch-Clamp Techniques/methods , Animals
14.
ACS Appl Mater Interfaces ; 10(30): 25666-25672, 2018 Aug 01.
Article En | MEDLINE | ID: mdl-29992804

Organic-inorganic hybrid layer-by-layer (LBL) composite structures can not only increase the strength and ductility of materials but also well disperse nanomaterials for better-conducting pathways. Here, we discovered the self-assembly process of an organic and silver (Ag) LBL hybrid structure having excellent sustainability during the long-term bending cycle. During the assembly process, the organic and Ag hybrid structure can be self-assembled into a layered structure. Unlike other conventional LBL fabrication processes, we applied the hydrogel scaffold of a biological polymer, which can spontaneously phase separate into an LBL structure in a water/alcohol solvent system. This new hydrogel-based Ag LBL patterns can successfully be printed on a flexible polyimide film without nozzle-clogging problem. Although these Ag LBL patterns cracked during the bending cycle, carbonized organic compounds between the Ag layers help to self-heal within few minutes at a low temperature (<80 °C). On the basis of our new hydrogel-based Ag ink, we could fabricate a fully printed reliable microscale flexible heater. We expect that our self-layering phenomenon can expand to the broad research field of flexible electronics in the near future.


Silver/chemistry , Biomimetics , Electrodes , Gelatin , Polymers
15.
Nat Commun ; 9(1): 2534, 2018 06 28.
Article En | MEDLINE | ID: mdl-29955045

The supergiant VX Sagittarii is a strong emitter of both H2O and SiO masers. However, previous VLBI observations have been performed separately, which makes it difficult to spatially trace the outward transfer of the material consecutively. Here we present the astrometrically registered, simultaneous maps of 22.2 GHz H2O and 43.1/42.8/86.2/129.3 GHz SiO masers toward VX Sagittarii. The H2O masers detected above the dust-forming layers have an asymmetric distribution. The multi-transition SiO masers are nearly circular ring, suggesting spherically symmetric wind within a few stellar radii. These results provide the clear evidence that the asymmetry in the outflow is enhanced after the smaller molecular gas clump transform into the inhomogeneous dust layers. The 129.3 GHz maser arises from the outermost region compared to that of 43.1/42.8/86.2 GHz SiO masers. The ring size of the 129.3 GHz maser is maximized around the optical maximum, suggesting that radiative pumping is dominant.

16.
ACS Appl Mater Interfaces ; 9(35): 29965-29972, 2017 Sep 06.
Article En | MEDLINE | ID: mdl-28806052

A one-step sub-micrometer-scale electrohydrodynamic (EHD) inkjet three-dimensional (3D)-printing technique that is based on the drop-on-demand (DOD) operation for which an additional postsintering process is not required is proposed. Both the numerical simulation and the experimental observations proved that nanoscale Joule heating occurs at the interface between the charged silver nanoparticles (Ag-NPs) because of the high electrical contact resistance during the printing process; this is the reason why an additional postsintering process is not required. Sub-micrometer-scale 3D structures were printed with an above-35 aspect ratio via the use of the proposed printing technique; furthermore, it is evident that the designed 3D structures such as a bridge-like shape can be printed with the use of the proposed printing technique, allowing for the cost-effective fabrication of a 3D touch sensor and an ultrasensitive air flow-rate sensor. It is believed that the proposed one-step printing technique may replace the conventional 3D conductive-structure printing techniques for which a postsintering process is used because of its economic efficiency.

17.
Bioinspir Biomim ; 12(3): 036012, 2017 05 17.
Article En | MEDLINE | ID: mdl-28513472

In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.


Biomimetics , Coleoptera/physiology , Flight, Animal/physiology , Robotics/instrumentation , Wings, Animal/physiology , Acceleration , Air , Animals , Biomechanical Phenomena , Coleoptera/anatomy & histology , Equipment Design , Models, Biological , Rotation , Wings, Animal/anatomy & histology
18.
Langmuir ; 33(14): 3367-3372, 2017 04 11.
Article En | MEDLINE | ID: mdl-28287742

In a nanowire dispersed in liquid droplets, the interplay between the surface tension of the liquid and the elasticity of the nanowire determines the final morphology of the bent or buckled nanowire. Here, we investigate the fabrication of a silver nanowire ring generated as the nanowire encapsulated inside of fine droplets. We used a hybrid aerodynamic and electrostatic atomization method to ensure the generation of droplets with scalable size in the necessary regime for ring formation. We analytically calculate the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. Thus, for potential large-scale manufacturing, the droplet size provides a convenient parameter to control the realization of ring structures from nanowires.

19.
Sci Rep ; 6: 39585, 2016 12 22.
Article En | MEDLINE | ID: mdl-28004830

The inward rectifier Kir2.1 current (IKir2.1) was reported to be facilitated by fluid flow. However, the mechanism underlying this facilitation remains uncertain. We hypothesized that during K+ influx or efflux, [K+] adjacent to the outer mouth of the Kir2.1 channel might decrease or increase, respectively, compared with the average [K+] of the bulk extracellular solution, and that fluid flow could restore the original [K+] and result in the apparent facilitation of IKir2.1. We recorded the IKir2.1 in RBL-2H3 cells and HEK293T cells that were ectopically over-expressed with Kir2.1 channels by using the whole-cell patch-clamp technique. Fluid-flow application immediately increased the IKir2.1, which was not prevented by either the pretreatment with inhibitors of various protein kinases or the modulation of the cytoskeleton and caveolae. The magnitudes of the increases of IKir2.1 by fluid flow were driving force-dependent. Simulations performed using the Nernst-Planck mass equation indicated that [K+] near the membrane surface fell markedly below the average [K+] of the bulk extracellular solution during K+ influx, and, notably, that fluid flow restored the decreased [K+] at the cell surface in a flow rate-dependent manner. These results support the "convection-regulation hypothesis" and define a novel interpretation of fluid flow-induced modulation of ion channels.


Cell Membrane/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium/chemistry , Actins/chemistry , Animals , Computer Simulation , Cytochalasin D/chemistry , Cytoskeleton/metabolism , Electrophysiology , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Ions , Membrane Potentials/drug effects , Patch-Clamp Techniques , Phalloidine/chemistry , Rats , beta-Cyclodextrins/chemistry
20.
Sci Rep ; 5: 16704, 2015 Nov 18.
Article En | MEDLINE | ID: mdl-26576857

As a novel route to construct fine and abnormally high-aspect-ratio electrodes with excellent adhesion and reduced contact resistivity on a textured surface, an electrostatic-force-assisted dispensing printing technique is reported and compared with conventional dispensing and electrohydrodynamic jet printing techniques. The electrostatic force applied between a silver paste and the textured surface of a crystalline silicon solar cell wafer significantly improves the physical adhesion of the electrodes, whereas those fabricated using a conventional dispensing printing technique peel off with a silver paste containing 2 wt% of a fluorosurfactant. Moreover, the contact resistivity and dimensionless deviation of total resistance are significantly reduced from 2.19 ± 1.53 mΩ · cm(2) to 0.98 ± 0.92 mΩ · cm(2) and from 0.10 to 0.03, respectively. By utilizing electrodes with an abnormally high-aspect-ratio of 0.79 (the measured thickness and width are 30.4 µm and 38.3 µm, respectively), the cell efficiency is 17.2% on a polycrystalline silicon solar cell with an emitter sheet resistance of 60 Ω/sq. This cell efficiency is considerably higher than previously reported values obtained using a conventional electrohydrodynamic jet printing technique, by +0.48-3.5%p.

...